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Homework Sheet 7
Model Solutions

Compulsory questions

1 Solve the following recurrence relations. i.e. find an explicit formula for
an in terms of n, and prove that it works. [You do not need to prove that
your formula works if the equation is a second order constant-coefficient
homogeneous linear recurrence.]

(a) an = 4an−1 − 4an−2, a0 = −1, a1 = 2.

We start by looking for solutions of the form an = tn. This gives tn =
4tn−1 − 4tn−2, and so t2 = 4t − 4, or t2 − 4t + 4 = 0, i.e. (t − 2)2 = 0,
so there is only one solution – t = 2. This means that an = 2n and
an = n2n should both satisty an = 4an−1 − 4an−2. We can cheack this:
2n = 4×2n−1−4×2n−2 and n×2n = 4(n−1)×2n−1−4(n−2)×2n−2 both
hold. Now we need to find A and B so that an = A2n + Bn2n satisfies
a0 = −1, a1 = 2. This gives the equations:

A + 0×B = −1 (1)
2A + 2B = 2 (2)

These are easily solved to get A = −1, B = 2, so the solution is an =
n2n+1 − 2n.

(b) an = 2an−1 + 3(n− 2), a0 = 1. [Hint: try subtracting an from 2n]

We start by looking at the first few terms:

n an 2n − an

0 1 0
1 -1 3
2 -2 6
3 -1 9
4 4 12
5 17 15
6 46 18

This suggests that an = 2n−3n is the solution. We prove this by induction.
When n = 0, we have already checked that this base case holds.

Now suppose that an = 2n−3n. We want to show that an+1 = 2n+1−3(n+
1). By the recurrence relation, an+1 = 2an + 3(n − 1). By our induction
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hypothesis, this is equal to 2(2n − 3n) + 3(n− 1) = 2n+1 − 6n + 3n− 3 =
2n+1 − 3(n + 1) as required. Therefore, the formula works for all n by
induction.

(c) an = an−1 + 3an−2, a0 = 5, a1 = 3.

We start by looking for solutions of the form an = tn. We get tn =
tn−1 + 3tn−2, and thus t2 − t− 3 = 0, so t = 1±
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(d) an = 1
1+an−1

, a0 = 1. [You may use Fn to denote the nth Fibonacci
number in your formula.]

We look at the first few values:
n an

0 1
1

1 1
2

2 2
3

3 3
5

This leads us to conjecture that an = Fn+1
Fn+2

. We prove this by induction.

We have already checked the base case. Now suppose that an = Fn+1
Fn+2

. We
want to show that an+1 = Fn+2Fn+3. We have that an+1 = 1

1+an
By our
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induction hypothesis, 1 + an = 1 + Fn+1
Fn+2

= Fn+2+Fn+1
Fn+2

= Fn+3
Fn+2

Therefore,

an+1 = Fn+2
Fn+3

as required, so by induction, the formula holds for all n.

2 Let F be a function defined by F (0) = 1, and

F (n) =
{

F
(

n
2

)
if n is even.

F (n− 1) + 2 if n is odd.

Prove that F (n) is odd for all natural numbers n.

We prove this by strong induction on n. If n = 0, then by definition F (0)
is odd. Now suppose that F (k) is odd for all k < n. We want to show
that F (n) is odd. If n is even, and n > 0, then n > 2, so n

2 < n, so F
(

n
2

)
is odd by our induction hypothesis, and therefore, F (n) is odd. On the
other hand, if n is odd, then n−1 < n, so F (n−1) is odd by our inductive
hypothesis, so F (n) is also odd, since an odd number plus 2 is also odd.
Therefore, by strong induction, F (n) is odd for all n ∈ N.

3 (a) Give a recursive description of the number of ways of covering a 2×n
chessboard with 2× 1 tiles.

If n = 0, there is only one way to tile a 2 × 0 chessboard – use no tiles.
Similarly, if n = 1, there is only one way – use just one horizontal tile.
Now suppose n > 1. We can either tile the 2× n chessboard by placing a
horizontal tile across the first row, then tiling the remaining 2 × (n − 1)
chessboard, or we can tile the first two rows with two vertical tiles, then
tile the remaining 2× (n− 2) chessboard.

(b) Deduce that the number of ways to tile a 2×n chessboard is the (n+1)th
Fibonacci number.

Let Tn be the number of ways of tiling a 2 × n chessboard. Then from
(a), we see that for n > 1, Tn = Tn−1 +Tn−2, since the number of ways of
tiling the 2×n chessboard is the number of ways in which the first row is
tiled with a horizontal tile, which is Tn−1, since all that remains is to tile
the uncovered 2 × (n − 1) chessboard, plus the number of ways in which
the first two rows are tiled with vertical tiles, which is Tn−2. Also, we
know that T0 = F0+1, and T1 = F1+1, so we can show the result holds for
all n by induction.

4 Let A be the Ackermann function; find A(3, 5). [Hint: start by finding
recurrence relations for A(1, n) and then A(2, n) and solving them.]
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Note that A(1, n) = A(0, A(1, n− 1)) = A(1, n− 1) + 1, and A(1, 0) = 2,
so we can show by induction that A(1, n) = n+2 for all n – we’ve already
checked the base case, and for the induction step, n + 2 + 1 = (n + 1) + 2.
Now we deduce that A(2, n) = A(1, A(2, n − 1)) = A(2, n − 1) + 2, and
A(2, 0) = A(1, 1) = 3, so A(2, n) = 2n + 3 – again, we’ve already checked
the base case, while for the induction step, 2n + 3 + 2 = 2(n + 1) + 3.

We can now get:

A(3, 5) = A(2, A(3, 4)) = 2A(3, 4) + 3 = 2A(2, A(3, 3)) + 3 = 2(2A(3, 3) + 3) + 3
= 4A(2, A(3, 2)) + 9 = 4(2A(3, 2) + 3) + 9 = 8A(3, 2) + 21 = 8A(2, A(3, 1)) + 21
= 8(2A(3, 1) + 3) + 21 = 16A(3, 1) + 45 = 16A(2, A(3, 0)) + 45 = 16(2A(3, 0) + 3) + 45
= 32A(2, 1) + 93 = 32× 5 + 93 = 253

5 Suppose k = 2n. Let a1, a2, . . . , ak be a set of k positive real numbers. Let
Mn be the maximum value of a1a2···ak

(a1+a2+···+ak)k , for any positive real numbers
a1, . . . , ak.

(a)Show that Mn satisfies the recurrence Mn+1 6 M2
nM

(2n−1)
1 . [Hint:

rewrite the fraction a1a2···ak

(a1+···+ak)k as

a1a2···a2n−1

(a1+···+a2n−1 )2n−1 ×
a2n−1+1···ak

(a2n−1+1+···+ak)2n−1

× (a1+···+a2n−1 )2
n−1

(a2n−1+1+···+ak)2
n−1

(a1+···+ak)k

]

To maximise a1a2···ak

(a1+a2+···+ak)k when k = 2n, rewrite the fraction as

a1a2···a2n−1

(a1+···+a2n−1 )2n−1 ×
a2n−1+1···ak

(a2n−1+1+···+ak)2n−1

× (a1+···+a2n−1 )2
n−1

(a2n−1+1+···+ak)2
n−1

(a1+···+ak)k

The first two fractions are both at most Mn−1, while the third fraction is
at most M2n−1

1 . Therefore, Mn 6 M2
n−1M

(2n−1)
1 as required.

(b) Find the values of Mn. [Hint: for the n = 1 case, note that (a1−a2)2 >
0.]

We note that M1 = 1
4 , since (a1 − a2)2 > 0, so 2a1a2 6 a2

1 + a2
2, and so

4a1a2 6 (a1 + a2)2.

We now show that Mn = 1
(2n)(2n) by induction on n. When n = 0,

it is obvious. We have already checked n = 1. Now the recurrence
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relation becomes Mn = M2
n−1

2(2n) . When we substitute 1
(2n)(2n) for Mn,

we get 1
(2n)(2n) 6 1

((2n−1)(2n−1))2
2(2n)

, which is true. This gives us that

Mn 6 1
(2n)(2n) . We need to show that this is an equality. To do this, we

note that this value of Mn is attained when the an are all equal.

Bonus Question

6 In the game Go, 2 players take turns to place stones of their colour (black
or white) on the points in a 19 × 19 grid. A stone is captured if all of
the neighbouring points (horizontally or vertically, but not diagonally) are
occupied by stones of the opposite colour. On the other hand, if one of
the neighbouring points is occupied by a stone of the same colour, then the
two stones are considered like a single entity, i.e. they are both captured
if all the neighbours of either stone (except for the ones on which the
stones themselves are located) are occupied by stones of the opposite colour.
Similarly for larger blocks of stones.

Give a recursive definition of when a stone is captured (possibly as part of
a larger group of captured stones).

The following is probably simplest:

A stone is captured if:

(i) All of its neighbouring points are occupied by stones of the opposite
colour.

or

(ii) All of its neighbouring points are occupied, and all of its neighbours of
the same colour would be captured if the stone were replaced by a stone
of the opposite colour.
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