## MATH 2112/CSCI 2112, Discrete Structures I

Winter 2007
Toby Kenney
Homework Sheet 9
Model Solutions

## Compulsory questions

1 Let $A=\{0,1,3,5\}, B=\{x \in \mathbb{R} \mid 1<x \leqslant 5\}$, and $C=\{x \in \mathbb{R} \mid x<$ $0.3 \vee x \geqslant 3\}$. Find:
(a) $A \cup B$
$A \cup B=\{x \in \mathbb{R} \mid(x=0) \vee(1 \leqslant x \leqslant 5)\}$.
(b) $B \cap C$
$B \cap C=\{x \in \mathbb{R} \mid 3 \leqslant x \leqslant 5\}$.
(c) $A \backslash B$
$A \backslash B=\{0,1\}$.
(d) $A \cup(B \cap C)$
$A \cup(B \cap C)=\{x \in \mathbb{R} \mid(x=0) \vee(x=1) \vee(3 \leqslant x \leqslant 5)\}$
(e) $(A \cup B) \cap C$
$(A \cup B) \cap C=\{x \in \mathbb{R} \mid(x=0) \vee(3 \leqslant x \leqslant 5)\}$
(f) $P(A)$

$$
\begin{aligned}
& P(A)=\{\emptyset,\{0\},\{1\},\{3\},\{5\},\{0,1\},\{0,3\},\{0,5\},\{1,3\},\{1,5\},\{3,5\},\{0,1,3\}, \\
& \{0,1,5\},\{0,3,5\},\{1,3,5\},\{0,1,3,5\}\}
\end{aligned}
$$

2 The symmetric difference $A \triangle B$ of two sets $A$ and $B$ is given by $A \triangle B=$ $(A \backslash B) \cup(B \backslash A)$.
(a) Show that $(A \triangle B)^{c}=\left(A^{c} \cap B^{c}\right) \cup(A \cap B)$.

Expressing the symmetric difference in terms of complements, $A \triangle B=$ $\left(A \cap B^{c}\right) \cup\left(A^{c} \cap B\right)$, and so,

$$
\begin{aligned}
& (A \triangle B)^{c}=\left(A \cap B^{c}\right)^{c} \cap\left(A^{c} \cap B\right)^{c}=\left(A^{c} \cup B\right) \cap\left(A \cup B^{c}\right) \\
& =\left(A^{c} \cap A\right) \cup\left(A^{c} \cap B^{c}\right) \cup(B \cap A) \cup\left(B \cap B^{c}\right)=\left(A^{c} \cap B^{c}\right) \cup(A \cap B)
\end{aligned}
$$

(b) Show that symmetric difference is associative, i.e. that $(A \triangle B) \triangle C=$ $A \triangle(B \triangle C)$.

$$
\begin{aligned}
& \left.(A \triangle B) \Delta C=\left(\left(A \cap B^{c}\right) \cup\left(A^{c} \cap B\right)\right) \cap C^{c}\right) \cup\left(\left(\left(A^{c} \cap B^{c}\right) \cup(A \cap B)\right) \cap C\right) \\
& =\left(A \cap B^{c} \cap C^{c}\right) \cup\left(A^{c} \cap B \cap C^{c}\right) \cup\left(A^{c} \cap B^{c} \cap C\right) \cup(A \cap B \cap C)
\end{aligned}
$$

Similarly,

$$
\begin{aligned}
& A \triangle(B \triangle C)=A \cap\left(\left(B^{c} \cap C^{c}\right) \cup(B \cap C)\right) \cup\left(A^{c} \cap\left(\left(B^{c} \cap C\right) \cup\left(B \cap C^{c}\right)\right)\right. \\
& =\left(A \cap B^{c} \cap C^{c}\right) \cup(A \cap B \cap C) \cup\left(A^{c} \cap B^{c} \cap C\right) \cup\left(A^{c} \cap B^{c} \cap C\right)
\end{aligned}
$$

So $(A \triangle B) \triangle C=A \triangle(B \triangle C)$

3 Let $A_{1}, A_{2}, \ldots$ be an infinite collection of sets such that for any $n, A_{1} \cap$ $A_{2} \cap \cdots \cap A_{n} \neq \emptyset$. Can these $A_{1}, A_{2}, \ldots$ be chosen so that $\bigcap_{i=1}^{\infty} A_{i}=\emptyset$ ?

This is possible: let $A_{n}=\left\{x \in \mathbb{R} \left\lvert\, 0<x<\frac{1}{n}\right.\right\}$, then $A_{1} \cap A_{2} \cap \cdots \cap A_{n}=$ $A_{n}$, which is non-empty. However, $\bigcap_{i=0}^{\infty} A_{i}=\emptyset$.

4 Use the inclusion-exclusion principle to find the number of composite from 1 to 100 inclusive. Show your working. [Hint: Any number between 1 and 100 that is composite is divisible by one of 2,3,5 or 7 (Bonus question: Why?).]

Between 1 and 100, there are 50 multiples of 2,33 multiples of 3,20 multiples of 5 , and 14 multiples of 7 . There are 16 multiples of $3 \times 2=6$, 10 multiples of $5 \times 2=10,7$ multiples of $7 \times 2=14,6$ multiples of $3 \times 5=15$, 4 multiples of $3 \times 7=21$, and 2 multiples of $5 \times 7=35$. There are 3 multiples of $2 \times 3 \times 5=30$, 2 multiples of $2 \times 3 \times 7=42,1$ multiple of $2 \times 5 \times 7=70$, and no multiples of $3 \times 5 \times 7$, or $2 \times 3 \times 5 \times 7$, so the total number of multiples of $2,3,5$, or 7 between 1 and 100 inclusive is
$50+33+20+14-16-10-7-6-4-2+3+2+1=78$. This includes the numbers $2,3,5$, and 7 , which are not composite, so the total number of composite numbers between 1 and 100 inclusive is $78-4=74$.

The reason that any composite number between 1 and 100 is divisible by one of $2,3,5$, or 7 is that if $n$ is a composite number that is at most 100 , then $n=a b$ for some $a$ and $b$, both greater than 1 . If $a$ and $b$ were both greater than 10 , then $n=a b$ would be greater than 100 , so by contradiction, one of $a$ and $b$ must be at most 10 . Without loss of generality, suppose $a \leqslant 10$, then $a$ has a prime factor (by unique prime factorisation) which must be one of $2,3,5$, and 7 , since these are the only prime numbers less than or equal to 10 .

