MATH 2112/CSCI 2112, Discrete Structures I

Winter 2007
Toby Kenney
Homework Sheet 1
Due in: Wednesday 17th January, 1:30 PM

Compulsory questions

1 Rewrite these sentences symbolically:
(a) Maths is fun but Dr Kenney is not a good lecturer.
(b) If I work very hard then if Dr Kenney is a good lecturer then I will get an A.
(c) In order for me to get an A, It is necessary that I work very hard.
(d) It is not the case that if I work very hard then maths is fun.

2 Which of the following pairs of propositions are logically equivalent? Justify your answers.
(a) p and $(p \rightarrow q) \rightarrow p$
(b) $p \wedge \neg q$ and $\neg p \rightarrow \neg q$
(c) $p \rightarrow(q \vee p)$ and $p \vee q$

3 Use De Morgan's Laws to write out the negation of the following sentences:
(a) I will work very hard or I will fail.
(b) Maths is fun and I will work very hard.
(c) Maths is not fun, and I will not work very hard.

4 Show the following logical equivalences using the equivalences in 1.1.1.:
(a) $(p \wedge(q \vee \neg q)) \wedge(p \vee(q \wedge \neg q))$ and p
(b) $q \vee(\neg \neg q \wedge p)$ and q
(c) $\neg q \vee(\neg \neg q \wedge p)$ and $\neg q \vee p$

5 Show that if for any propositions p, q, and r (not necessarily primitive propositions) $p \vee r \equiv p \vee q$ and $p \wedge r \equiv p \wedge q$ then we must have $q \equiv r$.

6 Using the rules of inference in table 1.3.1, and the logical equivalences in table 1.1.1, show that the following conclusions follow frow the premises given: (State which rule of inference you are using at each step.)
(a) From $(p \rightarrow(p \rightarrow p)) \rightarrow(p \rightarrow p)$ and $p \rightarrow(p \rightarrow p)$, deduce $p \rightarrow p$.
(b) From $p \wedge(q \vee r)$, deduce $p \vee q \vee s$.
(c) From $p \rightarrow q$ and $(p \rightarrow r) \vee(q \rightarrow r)$, deduce $p \rightarrow r$.

7 Find Boolean expressions for the following logic circuits:
(a)

(b)

8 Write the converse and the contrapositive of the following propositions:
(a) If n is prime, then either n is odd, or $n=2$.
(b) If the angle $A B C$ is a right-angle, then $A C$ is a diameter of the circle passing through A, B, and C.

