MATH 2112/CSCI 2112, Discrete Structures I Winter 2007 Toby Kenney Homework Sheet 1

Due in: Wednesday 17th January, 1:30 PM

Compulsory questions

- 1 Rewrite these sentences symbolically:
 - (a) Maths is fun but Dr Kenney is not a good lecturer.
 - (b) If I work very hard then if Dr Kenney is a good lecturer then I will get an A.
 - (c) In order for me to get an A, It is necessary that I work very hard.
 - (d) It is not the case that if I work very hard then maths is fun.
- 2 Which of the following pairs of propositions are logically equivalent? Justify your answers.
 - (a) p and $(p \rightarrow q) \rightarrow p$
 - (b) $p \land \neg q$ and $\neg p \to \neg q$
 - (c) $p \to (q \lor p)$ and $p \lor q$
- 3 Use De Morgan's Laws to write out the negation of the following sentences:
 - (a) I will work very hard or I will fail.
 - (b) Maths is fun and I will work very hard.
 - (c) Maths is not fun, and I will not work very hard.
- 4 Show the following logical equivalences using the equivalences in 1.1.1.:
 - (a) $(p \land (q \lor \neg q)) \land (p \lor (q \land \neg q))$ and p
 - (b) $q \lor (\neg \neg q \land p)$ and q
 - (c) $\neg q \lor (\neg \neg q \land p)$ and $\neg q \lor p$
- 5 Show that if for any propositions p, q, and r (not necessarily primitive propositions) $p \lor r \equiv p \lor q$ and $p \land r \equiv p \land q$ then we must have $q \equiv r$.
- 6 Using the rules of inference in table 1.3.1, and the logical equivalences in table 1.1.1, show that the following conclusions follow from the premises given: (State which rule of inference you are using at each step.)
 - (a) From $(p \to (p \to p)) \to (p \to p)$ and $p \to (p \to p)$, deduce $p \to p$.
 - (b) From $p \land (q \lor r)$, deduce $p \lor q \lor s$.
 - (c) From $p \to q$ and $(p \to r) \lor (q \to r)$, deduce $p \to r$.

7 Find Boolean expressions for the following logic circuits:

8 Write the converse and the contrapositive of the following propositions:

(a) If n is prime, then either n is odd, or n = 2.

(b) If the angle ABC is a right-angle, then AC is a diameter of the circle passing through A, B, and C.