MATH 2112/CSCI 2112, Discrete Structures I Winter 2007

Toby Kenney Homework Sheet 10 Due: Wednesday 4th April: 1:30 PM

Compulsory questions

1 For each of the following relations, determine which of the four properties: reflexivity, symmetry, antisymmetry, and transitivity hold for that relation.

(a) The relation on \mathbb{N} that relates two natural numbers if their difference is at most 7.

(b) The relation "is an ancestor of" on the set of all people.

- (c) The relation "has the same birthday as" on the set of all people.
- (d) The relation "is a square root of" on the set of real numbers.
- (e) The relation "is (strictly) taller than" on the set of all people.

(f) The relation on \mathbb{N} that relates two natural numbers if they are p^a and p^b for some prime p and positive integers a and b.

- 2 How many partial orders are there on a 3-element set (up to rearranging the elements of the set, so for example, 0 < 1 < 2 and 1 < 0 < 2 count as the same order)? Give all the corresponding Hasse diagrams.
- 3 For each of the following functions, determine whether the function is injective, and whether it is surjective. Justify your answers.
 - (a) $f : \mathbb{R}^+ \to \mathbb{R}, f(x) = x^2$.
 - (b) $f : \mathbb{R} \to \mathbb{R}, f(x) = x^2$.
 - (c) $f: \{0, 1, 2, 3\} \rightarrow \{0, 1, 2\}, f(0) = 0, f(1) = 2, f(2) = 2, f(3) = 1.$
 - (d) $f : \mathbb{Q} \to \mathbb{N}, f\left(\frac{a}{b}\right) = b$ whenever (a, b) = 1.

(e)
$$f: \mathbb{Z} \to \mathbb{N}, f(n) = \begin{cases} 2n & \text{if } n \ge 0\\ -2n-1 & \text{if } n < 0 \end{cases}$$

- 4 Suppose $f: B \to C$ and $g: A \to B$ are functions with composite $f \circ g: A \to C$. Give a proof or a counterexample for each of the following:
 - (a) If $f \circ g$ is injective then f is injective.
 - (b) If $f \circ g$ is injective then g is injective.
 - (c) If $f \circ g$ is surjective then f is surjective.
 - (d) If $f \circ g$ is surjective then g is surjective.