MATH 2112/CSCI 2112, Discrete Structures I Winter 2007

Toby Kenney

Homework Sheet 10
Due: Wednesday 4th April: 1:30 PM

Compulsory questions

1 For each of the following relations, determine which of the four properties: reflexivity, symmetry, antisymmetry, and transitivity hold for that relation.
(a) The relation on \mathbb{N} that relates two natural numbers if their difference is at most 7 .
(b) The relation "is an ancestor of" on the set of all people.
(c) The relation "has the same birthday as" on the set of all people.
(d) The relation "is a square root of" on the set of real numbers.
(e) The relation "is (strictly) taller than" on the set of all people.
(f) The relation on \mathbb{N} that relates two natural numbers if they are p^{a} and p^{b} for some prime p and positive integers a and b.

2 How many partial orders are there on a 3-element set (up to rearranging the elements of the set, so for example, $0<1<2$ and $1<0<2$ count as the same order)? Give all the corresponding Hasse diagrams.

3 For each of the following functions, determine whether the function is injective, and whether it is surjective. Justify your answers.
(a) $f: \mathbb{R}^{+} \rightarrow \mathbb{R}, f(x)=x^{2}$.
(b) $f: \mathbb{R} \rightarrow \mathbb{R}, f(x)=x^{2}$.
(c) $f:\{0,1,2,3\} \rightarrow\{0,1,2\}, f(0)=0, f(1)=2, f(2)=2, f(3)=1$.
(d) $f: \mathbb{Q} \rightarrow \mathbb{N}, f\left(\frac{a}{b}\right)=b$ whenever $(a, b)=1$.
(e) $f: \mathbb{Z} \rightarrow \mathbb{N}, f(n)= \begin{cases}2 n & \text { if } n \geqslant 0 \\ -2 n-1 & \text { if } n<0\end{cases}$

4 Suppose $f: B \rightarrow C$ and $g: A \rightarrow B$ are functions with composite $f \circ g$: $A \rightarrow C$. Give a proof or a counterexample for each of the following:
(a) If $f \circ g$ is injective then f is injective.
(b) If $f \circ g$ is injective then g is injective.
(c) If $f \circ g$ is surjective then f is surjective.
(d) If $f \circ g$ is surjective then g is surjective.

