MATH 2112/CSCI 2112, Discrete Structures I
 Winter 2007

Toby Kenney
Homework Sheet 5
Due in: Friday 16th February, 1:30 PM

Compulsory questions

1 Use Euclid's algorithm to find the greatest common divisor of the following pairs of numbers. Write down all the steps involved.
(a) 123,456 and 654,321
(b) $1,111,111$ and $12,121,212$

2 Find integers a and b such that $13579 a+2468 b=1$.
3 (a) Show that any number congruent to 3 modulo 4 is divisible by a prime number congruent to 3 modulo 4. [You may assume that the product of any collection of integers that are all congruent to 1 modulo 4 is also congruent to 1 modulo 4.]
(b) Prove that there are infinitely many prime numbers congruent to 3 modulo 4.

4 Are the following numbers rational or irrational? Give proofs:
(a) $\sqrt{6}$
(b) $\sqrt{2}+\sqrt{3}$ [Hint: What is $(\sqrt{2}+\sqrt{3})^{2}$?]

5 Show that the difference between a rational number and an irrational number is irrational.
6 Observe that $\left(\sqrt{2}^{\sqrt{2}}\right)^{\sqrt{2}}=\sqrt{2}^{(\sqrt{2} \times \sqrt{2})}=\sqrt{2}^{2}=2$. Prove that there are two irrational numbers α and β such that α^{β} is rational.

8 Find $0 \leqslant n<2310$ satisfying:

$$
\begin{array}{ccc}
n & \equiv 7 & (\bmod 11) \\
n & \equiv 10 & (\bmod 14) \\
n & \equiv 11 & (\bmod 15) \tag{3}
\end{array}
$$

Bonus Question

7 Prove that if a positive integer n is not a square, then \sqrt{n} is irrational.

