MATH 2112/CSCI 2112, Discrete Structures I
 Winter 2007

Toby Kenney
Homework Sheet 6
Due in: Monday 12th March, 1:30 PM

Compulsory questions

1 Show that if $m>1$ and $n>1$ are natural numbers such that $6 \mid m n$, then it is possible to cover an $m \times n$ chessboard with 3×2 tiles. [Hint: if $3 \mid m$ and $2 \mid n$, or $2 \mid m$ and $3 \mid n$, this should be easy. If $6 \mid m$ and $n>2$, divide into two cases: $n=2 k+3$ and $n=2 k$. Prove each of these by induction on k.]

2 Consider the set of ordered pairs (m, n) of natural numbers, ordered by $(k, l)<(m, n)$ if either $k<m$ or $(k=m$ and $l<n)$. [This is called the lexicographic order; it is the way words are ordered in the dictionary.] For example, $(1,7)<(2,1)$, and $(3,4)<(3,5)$. Show that this set is a well-order.

3 Show that $\sum_{i=1}^{n} i^{2}(i+1)=\frac{n(n+1)(n+2)(3 n+1)}{12}$.
4 What is wrong with the following "proof" that all maths lecturers are the same age?

Claim. All maths lecturers are the same age.
Proof. By induction on the number of maths lecturers. If there is only one maths lecturer, the claim is obvious. Now suppose the claim is true for any set of at most n maths lecturers. We want to prove that it is true for any set of at most $n+1$ maths lecturers. Let l_{1}, \ldots, l_{k+1} be a set of $k+1$ maths lecturers. By our induction hypothesis, all lecturers in the set l_{1}, \ldots, l_{k} are the same age, and also, all lecturers in the set $l_{2}, \ldots, l_{k}+1$ are the same age. Let a_{1} be the age of all of l_{1}, \ldots, l_{k}, and let a_{2} be the age of l_{2}, \ldots, l_{k+1}. But the lecturers l_{2}, \ldots, l_{k} are in both sets, so their ages must be both a_{1} and a_{2}. Therefore, a_{1} and a_{2} must be equal. Thus, all of l_{1}, \ldots, l_{k+1} are the same age.

Therefore, by induction, all maths lecturers are the same age.
5 Prove that if $m, n<2^{k}$ then Euclid's algorithm finds the greastest common divisor of m and n in at most $2 k$ steps. [Hint: how large are the numbers r_{0} and r_{1} ?]

6 In Sheet 4, Question 3 (a), you were asked to prove that any positive integer congruent to 3 modulo 4 is divisible by a prime that is also congruent to 3 modulo 4. You did this by contradiction, using the fact that the
product of any collection of primes all congruent to 1 modulo 4 is also congruent to 1 modulo 4 (proving this requires induction). Now prove the same result by strong induction. [Hint: If n is prime, the result is obviously true. If not, then $n=a b$, where a and b must both be odd, $a>1$ and $b>1$, and one of them must be congruent to 3 modulo 4.]

Bonus Question

7 An $n \times n$ magic square is an $n \times n$ array containing each of the numbers $1, \ldots, n^{2}$ exactly once, such that every row, column and diagonal has the same sum. The following is a 3×3 magic square:

2	9	4
7	5	3
6	1	8

Show that for any positive integer, k, there is a $3^{k} \times 3^{k}$ magic square.

