
MATH 2112/CSCI 2112, Discrete Structures I
Winter 2007
Toby Kenney

Homework Sheet 8
Due: Wednesday 21st March: 1:30 PM

Compulsory questions

1 (a) Consider the following algorithm for finding the nth fibonacci number:

Input: natural number n
Output: nth Fibonacci number

if n=0 then
return 0

end if
if n=1 then

return 1
end if
Find the n− 1th Fibonacci number {using this algorithm}
Find the n− 2th Fibonacci number {using this algorithm}
Add them together and
return the result.

Find a recurrence relation for the number of additions required to calculate
the nth fibonacci number using this algorithm and solve it.

(b) Now consider the following algorithm to find both Fn and Fn+1:

Input: natural number n
Output: nth and n + 1th Fibonacci numbers

if n=0 then
return 0 and 1

end if
Find Fn−1 and Fn, the n − 1th and nth fibonacci numbers {using this algo-
rithm}
return Fn and Fn−1 + Fn.

How many additions does this algorithm need to calculate Fn and Fn+1?

2 Which of the following functions are Θ(na) for some 0 < a < ∞. For
functions which are Θ(na) for some a, give the value of a. For function
which are not, are they O(na) for all a? are they Ω(na) for all a? Justify
your answers. You may use any of the results about O, Ω and Θ proved
in the lectures.

(a) f(n) = n7 − 3n3.6 + 4

1



(b) f(n) = e2n

(c) f(n) = 6

(d) f(n) = (n + 3) log(n)

(e) f(n) = n3 + n(log(n))2

(f) f(n) =
√

n− log(n2 + 5)

3 Consider the following algorithm for finding an element in a sorted list
a[1], a[2], . . . , a[n] of length n.

Input: x item to search for
Output: index at which x occurs in the list (or false if it doesn’t occur)

if n = 0 then
return false

else
Compare x to a[n/2] {rounding n/2 up to the nearest integer}
if x = a[n/2] then

return n/2
else if x < a[n/2] then

use this algorithm to find x in the list a[1], a[2], . . . , a[n/2− 1], and
return the result.

else if x > a[n/2] then
use this algorithm to find x in the list a[n/2+1], a[n/2+2], . . . , a[n], and
return the result plus n/2.

end if
end if

(a) How many comparisons does this algorithm take to find x: [The order
of magnitude is all that is required, e.g. O(n2) comparisons.]

(i) in the best case?

(ii) in the worst case?

(b) If the list is not sorted, the best search algorithm takes O(n) compar-
isons to find x on average. How many searches must a program perform
in order for it to be faster to sort the list with a merge-sort than to simply
use an unsorted list? (Give the order of magnitude, i.e. something like
“Ω(n3(log(n))2) searches”.) Justify your answer.

4 Recall the insertion sort: (This version is slightly different from the version
in the textbook.)

Suppose the list a[1], . . . , a[n] is initially sorted, then 100 of its values are
changed at random. How many comparisons and swaps will be needed
for the insertion sort to sort the changed list? Explain your answer. [You
only need to give the order of magnitude, e.g. Θ(n log n).]

2



for i = 1 to n do
for j = i− 1 to 0 do

if j = 0 then
move a[i] to the front of the list. {This requires i swaps.}

else
compare a[i] and a[j].
if a[i] > a[j] then

insert a[i] just after a[j] {This requires i− j − 1 swaps.}
go to next i.

end if
end if

end for
end for

Bonus question

5 Prove that any algorithm for sorting a list using only comparisons and
swaps must use Ω(n log n) comparisons in the worst case. [Hint: There
are n! possible orders the list can start in. The comparisons made must
distinguish between all of these possibilities. You may use the fact that
log(n!) is Θ(n log n).]

3


