MATH 2112/CSCI 2112, Discrete Structures I Winter 2007

Toby Kenney Homework Sheet 9 Due: Wednesday 28th March: 1:30 PM

Compulsory questions

- 1 Let $A = \{0, 1, 3, 5\}$, $B = \{x \in \mathbb{R} | 1 < x \leq 5\}$, and $C = \{x \in \mathbb{R} | x < 0.3 \lor x \ge 3\}$. Find:
 - (a) $A \cup B$
 - (b) $B \cap C$
 - (c) $A \setminus B$
 - (d) $A \cup (B \cap C)$
 - (e) $(A \cup B) \cap C$
 - (f) P(A)
- 2 The symmetric difference $A \triangle B$ of two sets A and B is given by $A \triangle B = (A \setminus B) \cup (B \setminus A)$.

(a) Show that $(A \triangle B)^c = (A^c \cap B^c) \cup (A \cap B)$.

(b) Show that symmetric difference is associative, i.e. that $(A \triangle B) \triangle C = A \triangle (B \triangle C)$.

- 3 Let A_1, A_2, \ldots be an infinite collection of sets such that for any $n, A_1 \cap A_2 \cap \cdots \cap A_n \neq \emptyset$. Can these A_1, A_2, \ldots be chosen so that $\bigcap_{i=1}^{\infty} A_i = \emptyset$?
- 4 Use the inclusion-exclusion principle to find the number of composite numbers from 1 to 100 inclusive. Show your working. [Hint: Any number less than 100 that is composite is divisible by one of 2,3,5 or 7 (Bonus question: Why?).]