MATH 2112/CSCI 2112, Discrete Structures I
 Winter 2007

Toby Kenney
Homework Sheet 9
Due: Wednesday 28th March: 1:30 PM

Compulsory questions

1 Let $A=\{0,1,3,5\}, B=\{x \in \mathbb{R} \mid 1<x \leqslant 5\}$, and $C=\{x \in \mathbb{R} \mid x<$ $0.3 \vee x \geqslant 3\}$. Find:
(a) $A \cup B$
(b) $B \cap C$
(c) $A \backslash B$
(d) $A \cup(B \cap C)$
(e) $(A \cup B) \cap C$
(f) $P(A)$

2 The symmetric difference $A \triangle B$ of two sets A and B is given by $A \triangle B=$ $(A \backslash B) \cup(B \backslash A)$.
(a) Show that $(A \triangle B)^{c}=\left(A^{c} \cap B^{c}\right) \cup(A \cap B)$.
(b) Show that symmetric difference is associative, i.e. that $(A \triangle B) \triangle C=$ $A \triangle(B \triangle C)$.

3 Let A_{1}, A_{2}, \ldots be an infinite collection of sets such that for any $n, A_{1} \cap$ $A_{2} \cap \cdots \cap A_{n} \neq \emptyset$. Can these A_{1}, A_{2}, \ldots be chosen so that $\bigcap_{i=1}^{\infty} A_{i}=\emptyset$?

4 Use the inclusion-exclusion principle to find the number of composite numbers from 1 to 100 inclusive. Show your working. [Hint: Any number less than 100 that is composite is divisible by one of $2,3,5$ or 7 (Bonus question: Why?).]

