MATH 2112/CSCI 2112, Discrete Structures I
 Winter 2007

Toby Kenney
 Midterm Examination
 Wednesday 28th February: 6:00-7:30 PM

Answer all questions.
1 Use universal instantiation and rules of inference to show that the following argument is valid.

$$
\begin{gathered}
(\forall x \in A)(x \in B) \\
\neg((\exists y \in C)(\neg(y \in A))) \\
z \in C \\
\therefore z \in B
\end{gathered}
$$

2 Which of the following are true when $A=\{0,2,5,7\}$ and $B=\{2,3,5,8,9,28\}$? Justify your answers.
(a) $(\forall x \in A)(\exists y \in B)(x \times y$ is a perfect square $)$
(b) $(\exists y \in B)(\forall x \in A)(x \times y$ is a perfect square)

3 Prove or disprove the following. You may use results proved in the course or the homework sheets, provided you state them clearly.
(a) $\sqrt[3]{4}$ is irrational.
(b) There is a natural number n such that $6 n^{3}+12 n^{2}+15 n+21$ is prime.
(c) There is a natural number n such that $n^{2}+8 n+6$ is prime.
(d) $n^{3}+5=m^{6}+9$ has no integer solutions. [Hint: try modulo 7.]
(e) For all natural numbers $n, \sum_{i=1}^{n} \frac{i(i+1)}{2}=\frac{n(n+1)(n+2)}{6}$
(f) There are infinitely many primes congruent to 3 modulo 6 .
(g) There are infinitely many prime numbers p such that there is an integer n for which $n^{2} \equiv-1(\bmod p)$. [Hint: Suppose the set of all such prime numbers is p_{1}, \ldots, p_{k}, and consider $\left(p_{1} p_{2} \cdots p_{k}\right)^{2}+1$.]

4 Which of the following pairs of propositions are logically equivalent? Justify your answers.
(a) $(p \wedge \neg q) \vee(\neg p \wedge q)$ and $(p \vee q) \wedge \neg(p \wedge q)$.
(b) $p \vee \neg q$ and $\neg(\neg p \vee q)$.

5 Find $0 \leqslant n<630$ satisfying all the following congruences:

$$
\begin{align*}
n & \equiv 3(\bmod 7) \tag{1}\\
n & \equiv 8(\bmod 10) \tag{2}\\
n & \equiv 4(\bmod 9) \tag{3}
\end{align*}
$$

6 Find a boolean expression for the following logic circuit.

7 Use Euclid's algorithm to find the greatest common divisor of the following pairs of numbers. Write down all the steps involved. Use your calculations to find integers a and b such that a times the first number plus b times the second number is their greatest common divisor.
(a) 238 and 133
(b) 289 and 102

