MATH 2112/CSCI 2112, Discrete Structures I
 Winter 2007

Toby Kenney
Midterm Examination
Model Solutions
Answer all questions.
1 Use universal instantiation and rules of inference to show that the following argument is valid.

$$
\begin{gathered}
(\forall x \in A)(x \in B) \\
\neg((\exists y \in C)(\neg(y \in A))) \\
z \in C \\
\therefore z \in B
\end{gathered}
$$

$\neg((\exists y \in C)(\neg(y \in A)))$	Premise
$(\forall y \in C)(\neg \neg(y \in A))$	Logical equivalence
$z \in C$	Premise
$\neg \neg(z \in A)$	Universal instantiation
$z \in A$	Logical equivalence
$(\forall x \in A)(x \in B)$	Premise
$z \in B$	Universal instantiation

2 Which of the following are true when $A=\{0,2,5,7\}$ and $B=\{2,3,5,8,9,28\}$? Justify your answers.
(a) $(\forall x \in A)(\exists y \in B)(x \times y$ is a perfect square $)$

This is true. We can choose the following values of y for each values of x :

x	y
0	$2,3,5,8,9,28$
2	2,8
5	5
7	28

(b) $(\exists y \in B)(\forall x \in A)(x \times y$ is a perfect square $)$

This is false - there is no y in B that works for every x in A (note that no number occurs in all the rows of the table above). Given any choice for y, we can choose the following x to make the assertion false:

y	x
2	5,7
3	$2,5,7$
5	2,7
8	5,7
9	$2,5,7$
28	2,5

3 Prove or disprove the following. You may use results proved in the course or the homework sheets, provided you state them clearly.
(a) $\sqrt[3]{4}$ is irrational.

This is true.
Proof. Suppose $\sqrt[3]{4}$ is rational. Then there are integers p and q with $q \neq 0$ and $(p, q)=1$, such that $\sqrt[3]{4}=\frac{p}{q}$. Cubing both sides, we get $4=\frac{p^{3}}{q^{3}}$ or $4 q^{3}=p^{3}$. Thus, $2 \mid p^{3}$. Therefore, $2 \mid p$ by unique prime factorisation, so there is an integer p^{\prime} such that $p=2 p^{\prime}$. Therefore, $4 q^{3}=8 p^{\prime 3}$, so $q^{3}=2 p^{\prime 3}$. Thus, $2 \mid q^{3}$, so $2 \mid q$ by unique prime factorisation. Therefore, p and q have the common divisor 2 , contradicting the fact that $(p, q)=1$. Therefore, we can't find integers p and q with $\frac{p}{q}=\sqrt[3]{4}$, so $\sqrt[3]{4}$ is irrational.
(b) There is a natural number n such that $6 n^{3}+12 n^{2}+15 n+21$ is prime. This is false.

Proof. $6 n^{3}+12 n^{2}+15 n+21=3\left(2 n^{3}+4 n^{2}+5 n+7\right)$, so if it is prime, then $2 n^{3}+4 n^{2}+5 n+7$ must be 1 or -1 . However, all its terms are non-negative (since n is non-negative, so it is at least 7 , so it can never be 1. Therefore, $6 n^{3}-15 n^{2}+12 n-21$ is never prime for n a natural number.
(c) There is a natural number n such that $n^{2}+8 n+6$ is prime.

This is true.
Proof. When $n=5, n^{2}+8 n+6=25+40+6=71$, which is prime.
(d) $n^{3}+5=m^{6}+9$ has no integer solutions [Hint: try modulo 7]

This is true.
Proof. Third and sixth powers modulo 7 are shown in the following table:

n	$n^{3}(\bmod 7)$	$n^{6}(\bmod 7)$
0	0	0
1	1	1
2	1	1
3	6	1
4	1	1
5	6	1
6	6	1

So all cubes are congruent to 0,1 , or 6 modulo 7 . Therefore, $n^{3}+5$ is always congruent to one of 4,5 , or 6 modulo 7 . On the other hand, m^{6} is always congruent to 0 or 1 modulo 7 . Therefore, $m^{6}+9$ is always congruent to 2 or 3 modulo 7 . Therefore, $n^{3}+5 \equiv m^{6}+9(\bmod 7)$ has no solutions, so $n^{3}+5=m^{6}+9$ can't have any integer solutions.
(e) For all natural numbers $n, \sum_{i=1}^{n} \frac{i(i+1)}{2}=\frac{n(n+1)(n+2)}{6}$

This is true.
Proof. Induction on n. When $n=0$, both sides are clearly 0 . Now suppose that

$$
\sum_{i=1}^{n} \frac{i(i+1)}{2}=\frac{n(n+1)(n+2)}{6}
$$

We need to show that

$$
\sum_{i=1}^{n+1} \frac{i(i+1)}{2}=\frac{(n+1)(n+2)(n+3)}{6}
$$

However,

$$
\begin{aligned}
& \sum_{i=1}^{n+1} \frac{i(i+1)}{2}=\sum_{i=1}^{n} \frac{i(i+1)}{2}+\frac{(n+1)(n+2)}{2} \\
& =\frac{n(n+1)(n+2)}{6}+\frac{(n+1)(n+2)}{2}=(n+1)(n+2)\left(\frac{n}{6}+\frac{1}{2}\right) \\
& =\frac{(n+1)(n+2)(n+3)}{6}
\end{aligned}
$$

So by induction, the formula holds for all natural numbers n.
(f) There are infinitely many primes congruent to 3 modulo 6 .

This is false.

Proof. Let p be a prime number congruent to 3 modulo 6 . This means that $6 \mid p-3$. Therefore, by transitivity of divisibility, $3 \mid p-3$. This means that $p-3=3 k$ for some integer k, so $p=3(k+1)$. Therefore, since p is
prime, $k+1$ must be 1 , and therefore, $p=3$. Thus, there are only finitely many prime numbers congruent to 3 modulo 6 (in particular, there is only one such prime number).
(g) There are infinitely many prime numbers p such that there is an integer n for which $n^{2} \equiv-1(\bmod p)$. [Hint: Suppose the set of all such prime numbers is p_{1}, \ldots, p_{k}, and consider $\left(p_{1} p_{2} \cdots p_{k}\right)^{2}+1$.]
This is true.
Proof. Suppose there are only finitely many prime numbers with this property. Let them be p_{1}, \ldots, p_{k}. Consider $m=\left(p_{1} \cdots p_{k}\right)^{2}+1$. m is divisible by a prime number p (by unique prime factorisation). p cannot be any of p_{1}, \ldots, p_{k}, since these all divide $m-1$. However, if we let $n=p_{1} \cdots p_{k}$, then $n^{2} \equiv-1(\bmod p)$, so p is another prime for which there is an integer n such that $n^{2} \equiv-1(\bmod p)$, contradicting our assumption that p_{1}, \ldots, p_{k} were the only such primes. This means that we can't list all such primes, so there must be infinitely many of them.

4 Which of the following pairs of propositions are logically equivalent? Justify your answers.
(a) $(p \wedge \neg q) \vee(\neg p \wedge q)$ and $(p \vee q) \wedge \neg(p \wedge q)$.

The truth tables are as follows:

p	q	$\neg p$	$\neg q$	$p \wedge \neg q$	$q \wedge \neg p$	$(p \wedge \neg q) \vee(\neg p \wedge q)$
0	0	1	1	0	0	0
0	1	1	0	0	1	1
1	0	0	1	1	0	1
1	1	0	0	0	0	0

p	q	$p \vee q$	$p \wedge q$	$\neg(p \wedge q)$	$(p \vee q) \wedge \neg(p \wedge q)$
0	0	0	0	1	0
0	1	1	0	1	1
1	0	1	0	1	1
1	1	1	1	0	0

We see that the columns for $(p \wedge \neg q) \vee(\neg p \wedge q)$ and $(p \vee q) \wedge \neg(p \wedge q)$ are the same, so they are logically equivalent.
(b) $p \vee \neg q$ and $\neg(\neg p \vee q)$.

When p is true and q is true, the first proposition is true, while the second one is false, so they are not logically equivalent.

5 Find $0 \leqslant n<630$ satisfying all the following congruences:

$$
\begin{align*}
n & \equiv 3(\bmod 7) \tag{1}\\
n & \equiv 8(\bmod 10) \tag{2}\\
n & \equiv 4(\bmod 9) \tag{3}
\end{align*}
$$

For the first two congruences,

$$
\begin{aligned}
n & \equiv 3(\bmod 7) \\
n & \equiv 8(\bmod 10)
\end{aligned}
$$

we note that $3 \times 7 \equiv 1(\bmod 10)$, so $3+5 \times(3 \times 7) \equiv 8(\bmod 10)$, and therefore, $3+5 \times 3 \times 7=108$ satisfies $108 \equiv 3(\bmod 7)$ and $108 \equiv$ $8(\bmod 10)$. Also, $108 \equiv 38(\bmod 70)$, so 38 also satisfies $38 \equiv 3(\bmod 7)$ and $38 \equiv 8(\bmod 10)$. Now we just need to solve the congruences

$$
\begin{aligned}
n & \equiv 38(\bmod 70) \\
n & \equiv 4(\bmod 9)
\end{aligned}
$$

Again, we note that $70 \equiv 7(\bmod 9)$, so $70 \times 4 \equiv 1(\bmod 9)$. Therefore, $38+(70 \times 4) \times 2 \equiv 4(\bmod 9)$, so $n=598$ satisfies all three congruences.

6 Find a boolean expression for the following logic circuit.

$$
(\neg(p \wedge q) \wedge \neg r) \vee r
$$

7 Use Euclid's algorithm to find the greatest common divisor of the following pairs of numbers. Write down all the steps involved. Use your calculations to find integers a and b such that a times the first number plus b times the second number is their greatest common divisor.
(a) 238 and 133

$$
\begin{aligned}
238 & =133+105 \\
133 & =105+28 \\
105 & =3 \times 28+21 \\
28 & =21+7 \\
21 & =3 \times 7
\end{aligned}
$$

So the greatest common divisor is 7 . Working backwards:

$$
\begin{aligned}
& 7=28-21=28-(105-3 \times 28)=4 \times 28-105=4 \times(133-105)-105 \\
& =4 \times 133-5 \times 105=4 \times 133-5 \times(238-133)=9 \times 133-5 \times 238
\end{aligned}
$$

So $a=-5$ and $b=9$ works.
(b) 289 and 102

$$
\begin{aligned}
289 & =2 \times 102+85 \\
102 & =85+17 \\
85 & =5 \times 17
\end{aligned}
$$

So the greatest common divisor is 17 . Working backwards:

$$
17=102-85=102-(289-2 \times 102)=3 \times 102-289
$$

So $a=-1, b=3$ works.

