
MATH 2112/CSCI 2112, Discrete Structures I
Winter 2007

Toby Kenney
Mock Midterm Examination

Model Solutions

1 Use Euclid’s algorithm to find the greatest common divisor of the following
pairs of numbers. Write down all the steps involved. Use your calculations
to find integers a and b such that a times the first number plus b times the
second number is their greatest common divisor.

(a) 159 and 265

265 = 159 + 106

159 = 106 + 53

106 = 2 × 53

Therefore, the greatest common divisor is 53. Working backwards:

53 = 159− 106 = 159− (265 − 159) = 2 × 159− 265

So a = 2, b = −1 works.

(b) 237 and 115

237 = 2 × 115 + 7

115 = 16 × 7 + 3

7 = 2 × 3 + 1

3 = 3 × 1

Therefore, the greatest common divisor is 1. Working backwards:

1 = 7 − 2 × 3 = 7 − 2 × (115− 16× 7) = 33× 7 − 2 × 115

= 33× (237 − 2 × 115)− 2 × 115 = 33 × 237− 68× 115

So a = 33, b = −68 works.
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2 Which of the following pairs of propositions are logically equivalent? Jus-
tify your answers.

(a) p → (¬p ∨ q) and ¬p ∨ q.

The truth tables are as follows:

p q ¬p ¬p ∨ q p → (¬p ∨ q)
0 0 1 1 1
0 1 1 1 1
1 0 0 0 0
1 1 0 1 1

The columns for p → (¬p∨q) and ¬p∨q are the same, so they are logically
equivalent.

(b) p ∧ (q ∨ r) and (p ∧ q) ∨ (q ∧ r).

These are not logically equivalent. When p is false, but q and r are both
true, the first proposition is false, but the second is true.

(c) (p ∨ (p → q)) ∧ r and (p ∨ q) ∧ r.

These are not logically equivalent.When p and q are false, but r is true,
the first proposition is true, while the second is false.

3 Find boolean expressions for the following logic circuits.

(a) (P ∧ Q) ∨ (¬Q ∧ R)

(b) (¬P ∧ (Q ∨ ¬R)) ∨ R

4 Which of the following are true when A = {0, 1, 3, 5} and B = {1, 2, 4, 6}?
Justify your answers.

(a) (∀x ∈ A)(x + 1 ∈ B)

This is true. For x = 0, 1 ∈ B; for x = 1, 2 ∈ B; for x = 3, 4 ∈ B; and for
x = 5, 6 ∈ B.

(b) (∃x ∈ A)(x + 2 ∈ B)

This is true. Let x = 0. Then x + 2 = 2 ∈ B.

(c) (∀x ∈ A)(∃y ∈ B)(x + y is even)
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This is true: we can make the following choices for y:

x y k such that x + y = 2k

0 2,4,6 1,2,3
1 1 1
3 1 2
5 1 3

(d) (∃y ∈ B)(∀x ∈ A)(x + y is even)

This is not true, since once y is chosen, we can choose x to make x + y

not even as follows:

y x
1 0
2 1,3,5
4 1,3,5
6 1,3,5

5 Use Venn diagrams to show the following arguments are invalid:

(a)

(∀x ∈ A)(x ∈ B ∨ x ∈ C)

(∀x ∈ B)(x ∈ C)

∴ (∀x ∈ A)(x ∈ B)

C

B

x
A

(b)

(∃x ∈ A)(x ∈ B)
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(∃x ∈ B)(x ∈ C)

∴ (∃x ∈ A)(x ∈ C)

C

B

A

x

y

6 Use universal instantiation and rules of inference to show that the follow-
ing arguments are valid.

(a)

(∀x ∈ A)(x ∈ B → x ∈ C)

y ∈ A ∧ y ∈ B

∴ y ∈ C

(∀x ∈ A)(x ∈ B → x ∈ C) Premise
y ∈ A ∧ y ∈ B Premise
y ∈ A Specialisation
y ∈ B → y ∈ C Universal instantiation
y ∈ B Specialisation
y ∈ C Modus ponens

(b)

(∀x ∈ A)(x ∈ B ∨ φ(x))

(∀x ∈ A)(x ∈ C ∨ ¬φ(x))
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y ∈ A ∧ ¬y ∈ C

∴ y ∈ B

(∀x ∈ A)(x ∈ C ∨ ¬φ(x) Premise
y ∈ A ∧ ¬y ∈ C Premise
y ∈ A Specialisation
y ∈ C ∨ ¬φ(y) Universal instantiation
¬y ∈ C Specialisation from line 2
¬φ(y) Elimination
(∀x ∈ A)(x ∈ B ∨ φ(x)) Premise
y ∈ B ∨ φ(y) Universal instantiation
y ∈ B Elimination

7 Prove or disprove the following. You may use results proved in the course
or the homework sheets, provided you state them clearly.

(a) 3
√

7 is rational.

This is false.

Proof. Suppose 3
√

7 were rational. Then it would be a
b

for integers a and

b with b 6= 0. Now let a′ = a
(a,b) and b′ = b

(a,b) . a′ and b′ are coprime,

and a
′

b′
= 3

√
7. We cube both sides to get a′3 = 7b′3. Thus 7|a′3, and so

we must have 7|a′ (see Sheet 4 Q.3). Therefore, a′ = 7c for some integer
c. Hence, (7c)3 = 7b′3, and so 343c3 = 7b′3, so 49c3 = b3. Therefore,
7|b′. This means that 7 is a common divisor of a′ and b′. However, the
greatest common divisor of a′ and b′ is 1. This is a contradiction, so our
assumption that 3

√
7 might be rational, must be false. Therefore, 3

√
7 must

be irrational

(b) There is a natural number n such that n2 + 4n + 16 is prime.

This is true.

Proof. When n = 3, n2 + 4n + 16 = 9 + 12 + 16 = 37, which is prime.

(c) There is a natural number n such that n2 − 169 is prime.

This is false.
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Proof. n2 − 169 = (n + 13)(n − 13). If neither n + 13 nor n − 13 is ±1,
then their product is either composite or 0, so it is not prime. Therefore,
we only need to check the cases when n− 13 = ±1 (n + 13 is never ±1 for
n a natural number, as n+13 > 13). These are n = 12 and n = 14. When
n = 12, n2 − 169 = 144 − 169 = −25, which is not prime. When n = 14,
n2 − 169 = 196 − 169 = 27, which is not prime. Therefore, n2 − 169 is
never prime.

(d) All integers of the form n2 + n + 41 are prime for n ∈ N.

This is false.

Proof. When n = 41, n2 + n + 41 = 412 + 41 × 2 = 41 × 43, which is not
prime. (When n = 40, n2 + n + 41 = 40(40 + 1) + 41 = 41 × 41, which is
also not prime.)

(e) 2135 + 398 + 532 is divisible by 7.

This is true.

Proof. 23 = 8 ≡ 1 (mod 7). Therefore, for any natural number n, 23n ≡
1n ≡ 1 (mod 7). Hence, 2135 ≡ 1 (mod 7). Similarly, 32 = 9 ≡ 2 (mod 7).
Therefore, for any natural number n, 36n ≡ 23n ≡ 1 (mod 7). Therefore,
396 ≡ 1 (mod 7), so 398 = 32 × 396 ≡ 32 ≡ 2 (mod 7). Finally, 52 =
25 ≡ 4 (mod 7), 53 ≡ 4 × 5 ≡ 6 (mod 7), so 56 ≡ 62 ≡ 1 (mod 7).
Therefore, 530 ≡ 15 ≡ 1 (mod 7), so 532 ≡ 52 ≡ 4 (mod 7). Thus,
2135 +398 +532 ≡ 1+2+4 ≡ 0 (mod 7), so it is indeed divisible by 7.

(f) n2 + 2 = m5 + 9 has no integer solutions [Hint: try modulo 11]

This is true.

Proof. Consider squares and fifth powers modulo 11:
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n n2 (mod 11) n5 (mod 11)
0 0 0
1 1 1
2 4 10
3 9 1
4 5 1
5 3 1
6 3 10
7 5 10
8 9 10
9 4 1
10 1 10

Therefore, modulo 11, n2 must be congruent to one of 0,1,3,4,5 and 9,
while m3 must be congruent to one of 0,1 and 10. Therefore, n2 + 2 will
be congruent to one of 2,3,5,6,7 and 0, while m5 + 9 must be congruent
to one of 9,10, and 8. Therefore, the two quantities cannot be congruent
modulo 11, so they cannot be equal.

(g) For all natural numbers n,
∑n

i=1 i3 = n2(n+1)2

4

This is true:

Proof. Induction on n. When n = 0, the sum is empty, so it is 0, while
n2(n+1)2

4 = 0 also, so the formula works.

Now suppose the formula works for n. We want to show that it works for

n + 1, i.e., we want to show that
∑n+1

i=0 i3 = (n+1)2(n+2)2

4 . However,

n+1
∑

i=0

i3 =

n
∑

i=0

i3 + (n + 1)3 =
n2(n + 1)2

4
+ (n + 1)3

= (n + 1)2
(

n2

4
+ n + 1

)

= (n + 1)2
n2 + 4n + 4

4
=

(n + 1)2(n + 2)2

4

(h) For all natural numbers n,
∑n

i=1
1

i(i+1) = n
n+1

This is true.

Proof. Induction on n:

When n = 0, the formula obviously works.
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Now suppose it works for n. We want to show that it also works for n+1,
i.e. we want to show that

∑n+1
i=1

1
i(i+1) = n+1

n+2 . Now

n+1
∑

i=1

1

i(i + 1)
=

n
∑

i=1

1

i(i + 1)
+

1

(n + 1)(n + 2)
=

n

n + 1
+

1

(n + 1)(n + 2)
=

n(n + 2) + 1

(n + 1)(n + 2)
=

(n + 1)2

(n + 1)(n + 2)
=

n + 1

n + 2

(i) There are infinitely many primes congruent to 2 modulo 3. [Hint:
suppose there are only finitely many; take the product of all of them. If
this is congruent to 2 modulo 3, then multiply by 2. Add 1 to the resulting
product. You may assume that any number that is congruent to 2 modulo
3 is divisible by a prime number congruent to 2 modulo 3.]

This is true.

Proof. Suppose there are only finitely many primes that are congruent to
2 modulo 3. Let them be p1, p2, . . . , pk. Now consider the product N =
p1p2 · · · pk. N is not divisible by 3, since none of the pi is. Therefore, either
N ≡ 1 (mod 3) or N ≡ 2 (mod 3). In the first case, N + 1 ≡ 2 (mod 3),
so it must be divisible by some prime that is congruent to 2 modulo 3, but
it cannot be divisible by any prime that is congruent to 2 modulo 3, since
all such primes divide N . In the second case, 2N + 1 ≡ 2 (mod 3), so it
must be divisible by a prime that is congruent to 2 modulo 3. However, it
cannot be divisible by a prime that is congruent to 2 modulo 3, since all
such primes divide 2N . Therefore, in either case we reach a contradiction,
so our assumption that there were only finitely many such primes must
be false, i.e., there must be infinitely many primes congruent to 2 modulo
3.

(j) For all natural numbers n,
∑n

i=1(i
3 − 3i) = n4+2n3

−5n2
−6n+8

4

This is false.

Proof. When n = 0, the sum is empty, so is 0, while n4+2n3
−5n2

−6n+8
4 =

8
4 6= 0, so the formula does not hold when n = 0.

Note that the inductive step of a proof by induction works here, but the
base case fails.
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8 Find 0 6 n < 660 satisfying all the following congruences:

n ≡ 3 (mod 5) (1)

n ≡ 5 (mod 11) (2)

n ≡ 4 (mod 12) (3)

First we find 0 6 n < 55 satisfying the first two congruences. Observe
that 11 ≡ 1 (mod 5), so 5 + 11n ≡ n (mod 5). Therefore, 5 + 11× 3 = 38
satisfies the first two congruences.

Now we look for a solution to the two congruences:

n ≡ 38 (mod 55) (4)

n ≡ 4 (mod 12) (5)

Note that 55 ≡ 7 (mod 1)2, so 55× 2 ≡ 2 (mod 12). Thus, 38 + 55(2n) ≡
2 + 2n (mod 12), so 38 + 55 × 2 ≡ 2 + 2 ≡ 4 (mod 12), so n = 148 is the
solution to the congruences.
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