MATH 2112/CSCI 2112, Discrete Structures I

Winter 2007
Toby Kenney
Mock Midterm Examination
Model Solutions
1 Use Euclid's algorithm to find the greatest common divisor of the following pairs of numbers. Write down all the steps involved. Use your calculations to find integers a and b such that a times the first number plus b times the second number is their greatest common divisor.
(a) 159 and 265

$$
\begin{aligned}
265 & =159+106 \\
159 & =106+53 \\
106 & =2 \times 53
\end{aligned}
$$

Therefore, the greatest common divisor is 53 . Working backwards:

$$
53=159-106=159-(265-159)=2 \times 159-265
$$

So $a=2, b=-1$ works.
(b) 237 and 115

$$
\begin{aligned}
237 & =2 \times 115+7 \\
115 & =16 \times 7+3 \\
7 & =2 \times 3+1 \\
3=3 \times 1 &
\end{aligned}
$$

Therefore, the greatest common divisor is 1 . Working backwards:

$$
\begin{aligned}
& 1=7-2 \times 3=7-2 \times(115-16 \times 7)=33 \times 7-2 \times 115 \\
& =33 \times(237-2 \times 115)-2 \times 115=33 \times 237-68 \times 115
\end{aligned}
$$

So $a=33, b=-68$ works.

2 Which of the following pairs of propositions are logically equivalent? Justify your answers.
(a) $p \rightarrow(\neg p \vee q)$ and $\neg p \vee q$.

The truth tables are as follows:

p	q	$\neg p$	$\neg p \vee q$	$p \rightarrow(\neg p \vee q)$
0	0	1	1	1
0	1	1	1	1
1	0	0	0	0
1	1	0	1	1

The columns for $p \rightarrow(\neg p \vee q)$ and $\neg p \vee q$ are the same, so they are logically equivalent.
(b) $p \wedge(q \vee r)$ and $(p \wedge q) \vee(q \wedge r)$.

These are not logically equivalent. When p is false, but q and r are both true, the first proposition is false, but the second is true.
(c) $(p \vee(p \rightarrow q)) \wedge r$ and $(p \vee q) \wedge r$.

These are not logically equivalent. When p and q are false, but r is true, the first proposition is true, while the second is false.

3 Find boolean expressions for the following logic circuits.
(a) $(P \wedge Q) \vee(\neg Q \wedge R)$
(b) $(\neg P \wedge(Q \vee \neg R)) \vee R$

4 Which of the following are true when $A=\{0,1,3,5\}$ and $B=\{1,2,4,6\}$? Justify your answers.
(a) $(\forall x \in A)(x+1 \in B)$

This is true. For $x=0,1 \in B$; for $x=1,2 \in B$; for $x=3,4 \in B$; and for $x=5,6 \in B$.
(b) $(\exists x \in A)(x+2 \in B)$

This is true. Let $x=0$. Then $x+2=2 \in B$.
(c) $(\forall x \in A)(\exists y \in B)(x+y$ is even $)$

This is true: we can make the following choices for y :

x	y	k such that $x+y=2 k$
0	$2,4,6$	$1,2,3$
1	1	1
3	1	2
5	1	3

(d) $(\exists y \in B)(\forall x \in A)(x+y$ is even $)$

This is not true, since once y is chosen, we can choose x to make $x+y$ not even as follows:

y	x
1	0
2	$1,3,5$
4	$1,3,5$
6	$1,3,5$

5 Use Venn diagrams to show the following arguments are invalid:
(a)

$$
\begin{gathered}
(\forall x \in A)(x \in B \vee x \in C) \\
(\forall x \in B)(x \in C) \\
\therefore(\forall x \in A)(x \in B)
\end{gathered}
$$

(b)

$$
(\exists x \in A)(x \in B)
$$

$$
\begin{aligned}
& (\exists x \in B)(x \in C) \\
\therefore & (\exists x \in A)(x \in C)
\end{aligned}
$$

6 Use universal instantiation and rules of inference to show that the following arguments are valid.
(a)

$$
\begin{gathered}
(\forall x \in A)(x \in B \rightarrow x \in C) \\
y \in A \wedge y \in B \\
\therefore y \in C
\end{gathered}
$$

$$
\begin{array}{ll}
(\forall x \in A)(x \in B \rightarrow x \in C) & \text { Premise } \\
y \in A \wedge y \in B & \text { Premise } \\
y \in A & \text { Specialisation } \\
y \in B \rightarrow y \in C & \text { Universal instantiation } \\
y \in B & \text { Specialisation } \\
y \in C & \text { Modus ponens }
\end{array}
$$

(b)

$$
\begin{gathered}
(\forall x \in A)(x \in B \vee \phi(x)) \\
(\forall x \in A)(x \in C \vee \neg \phi(x))
\end{gathered}
$$

$$
\begin{gathered}
y \in A \wedge \neg y \in C \\
\therefore y \in B
\end{gathered}
$$

$(\forall x \in A)(x \in C \vee \neg \phi(x)$	Premise
$y \in A \wedge \neg y \in C$	Premise
$y \in A$	Specialisation
$y \in C \vee \neg \phi(y)$	Universal instantiation
$\neg y \in C$	Specialisation from line 2
$\neg \phi(y)$	Elimination
$(\forall x \in A)(x \in B \vee \phi(x))$	Premise
$y \in B \vee \phi(y)$	Universal instantiation
$y \in B$	Elimination

7 Prove or disprove the following. You may use results proved in the course or the homework sheets, provided you state them clearly.
(a) $\sqrt[3]{7}$ is rational.

This is false.
Proof. Suppose $\sqrt[3]{7}$ were rational. Then it would be $\frac{a}{b}$ for integers a and b with $b \neq 0$. Now let $a^{\prime}=\frac{a}{(a, b)}$ and $b^{\prime}=\frac{b}{(a, b)}$. a^{\prime} and b^{\prime} are coprime, and $\frac{a^{\prime}}{b^{\prime}}=\sqrt[3]{7}$. We cube both sides to get $a^{\prime 3}=7 b^{\prime 3}$. Thus $7 \mid a^{\prime 3}$, and so we must have $7 \mid a^{\prime}$ (see Sheet 4 Q.3). Therefore, $a^{\prime}=7 c$ for some integer c. Hence, $(7 c)^{3}=7 b^{\prime 3}$, and so $343 c^{3}=7 b^{3}$, so $49 c^{3}=b^{3}$. Therefore, $7 \mid b^{\prime}$. This means that 7 is a common divisor of a^{\prime} and b^{\prime}. However, the greatest common divisor of a^{\prime} and b^{\prime} is 1 . This is a contradiction, so our assumption that $\sqrt[3]{7}$ might be rational, must be false. Therefore, $\sqrt[3]{7}$ must be irrational
(b) There is a natural number n such that $n^{2}+4 n+16$ is prime.

This is true.
Proof. When $n=3, n^{2}+4 n+16=9+12+16=37$, which is prime.
(c) There is a natural number n such that $n^{2}-169$ is prime.

This is false.

Proof. $n^{2}-169=(n+13)(n-13)$. If neither $n+13$ nor $n-13$ is ± 1, then their product is either composite or 0 , so it is not prime. Therefore, we only need to check the cases when $n-13= \pm 1(n+13$ is never ± 1 for n a natural number, as $n+13 \geqslant 13$). These are $n=12$ and $n=14$. When $n=12, n^{2}-169=144-169=-25$, which is not prime. When $n=14$, $n^{2}-169=196-169=27$, which is not prime. Therefore, $n^{2}-169$ is never prime.
(d) All integers of the form $n^{2}+n+41$ are prime for $n \in \mathbb{N}$.

This is false.
Proof. When $n=41, n^{2}+n+41=41^{2}+41 \times 2=41 \times 43$, which is not prime. (When $n=40, n^{2}+n+41=40(40+1)+41=41 \times 41$, which is also not prime.)
(e) $2^{135}+3^{98}+5^{32}$ is divisible by 7 .

This is true.
Proof. $2^{3}=8 \equiv 1(\bmod 7)$. Therefore, for any natural number $n, 2^{3 n} \equiv$ $1^{n} \equiv 1(\bmod 7)$. Hence, $2^{135} \equiv 1(\bmod 7)$. Similarly, $3^{2}=9 \equiv 2(\bmod 7)$. Therefore, for any natural number $n, 3^{6 n} \equiv 2^{3 n} \equiv 1(\bmod 7)$. Therefore, $3^{96} \equiv 1(\bmod 7)$, so $3^{98}=3^{2} \times 3^{96} \equiv 3^{2} \equiv 2(\bmod 7)$. Finally, $5^{2}=$ $25 \equiv 4(\bmod 7), 5^{3} \equiv 4 \times 5 \equiv 6(\bmod 7)$, so $5^{6} \equiv 6^{2} \equiv 1(\bmod 7)$. Therefore, $5^{30} \equiv 1^{5} \equiv 1(\bmod 7)$, so $5^{32} \equiv 5^{2} \equiv 4(\bmod 7)$. Thus, $2^{135}+3^{98}+5^{32} \equiv 1+2+4 \equiv 0(\bmod 7)$, so it is indeed divisible by 7 .
(f) $n^{2}+2=m^{5}+9$ has no integer solutions [Hint: try modulo 11]

This is true.

Proof. Consider squares and fifth powers modulo 11:

n	$n^{2}(\bmod 11)$	$n^{5}(\bmod 11)$
0	0	0
1	1	1
2	4	10
3	9	1
4	5	1
5	3	1
6	3	10
7	5	10
8	9	10
9	4	1
10	1	10

Therefore, modulo $11, n^{2}$ must be congruent to one of $0,1,3,4,5$ and 9 , while m^{3} must be congruent to one of 0,1 and 10 . Therefore, $n^{2}+2$ will be congruent to one of $2,3,5,6,7$ and 0 , while $m^{5}+9$ must be congruent to one of 9,10 , and 8 . Therefore, the two quantities cannot be congruent modulo 11 , so they cannot be equal.
(g) For all natural numbers $n, \sum_{i=1}^{n} i^{3}=\frac{n^{2}(n+1)^{2}}{4}$

This is true:

Proof. Induction on n. When $n=0$, the sum is empty, so it is 0 , while $\frac{n^{2}(n+1)^{2}}{4}=0$ also, so the formula works.
Now suppose the formula works for n. We want to show that it works for $n+1$, i.e., we want to show that $\sum_{i=0}^{n+1} i^{3}=\frac{(n+1)^{2}(n+2)^{2}}{4}$. However,

$$
\begin{aligned}
& \sum_{i=0}^{n+1} i^{3}=\sum_{i=0}^{n} i^{3}+(n+1)^{3}=\frac{n^{2}(n+1)^{2}}{4}+(n+1)^{3} \\
& =(n+1)^{2}\left(\frac{n^{2}}{4}+n+1\right)=(n+1)^{2} \frac{n^{2}+4 n+4}{4}=\frac{(n+1)^{2}(n+2)^{2}}{4}
\end{aligned}
$$

(h) For all natural numbers $n, \sum_{i=1}^{n} \frac{1}{i(i+1)}=\frac{n}{n+1}$

This is true.

Proof. Induction on n :
When $n=0$, the formula obviously works.

Now suppose it works for n. We want to show that it also works for $n+1$, i.e. we want to show that $\sum_{i=1}^{n+1} \frac{1}{i(i+1)}=\frac{n+1}{n+2}$. Now

$$
\begin{aligned}
& \sum_{i=1}^{n+1} \frac{1}{i(i+1)}=\sum_{i=1}^{n} \frac{1}{i(i+1)}+\frac{1}{(n+1)(n+2)}= \\
& \frac{n}{n+1}+\frac{1}{(n+1)(n+2)}=\frac{n(n+2)+1}{(n+1)(n+2)}=\frac{(n+1)^{2}}{(n+1)(n+2)}=\frac{n+1}{n+2}
\end{aligned}
$$

(i) There are infinitely many primes congruent to 2 modulo 3. [Hint: suppose there are only finitely many; take the product of all of them. If this is congruent to 2 modulo 3, then multiply by 2. Add 1 to the resulting product. You may assume that any number that is congruent to 2 modulo 3 is divisible by a prime number congruent to 2 modulo 3.]

This is true.

Proof. Suppose there are only finitely many primes that are congruent to 2 modulo 3. Let them be $p_{1}, p_{2}, \ldots, p_{k}$. Now consider the product $N=$ $p_{1} p_{2} \cdots p_{k}$. N is not divisible by 3 , since none of the p_{i} is. Therefore, either $N \equiv 1(\bmod 3)$ or $N \equiv 2(\bmod 3)$. In the first case, $N+1 \equiv 2(\bmod 3)$, so it must be divisible by some prime that is congruent to 2 modulo 3 , but it cannot be divisible by any prime that is congruent to 2 modulo 3 , since all such primes divide N. In the second case, $2 N+1 \equiv 2(\bmod 3)$, so it must be divisible by a prime that is congruent to 2 modulo 3 . However, it cannot be divisible by a prime that is congruent to 2 modulo 3 , since all such primes divide $2 N$. Therefore, in either case we reach a contradiction, so our assumption that there were only finitely many such primes must be false, i.e., there must be infinitely many primes congruent to 2 modulo 3.
(j) For all natural numbers n, $\sum_{i=1}^{n}\left(i^{3}-3 i\right)=\frac{n^{4}+2 n^{3}-5 n^{2}-6 n+8}{4}$

This is false.
Proof. When $n=0$, the sum is empty, so is 0 , while $\frac{n^{4}+2 n^{3}-5 n^{2}-6 n+8}{4}=$ $\frac{8}{4} \neq 0$, so the formula does not hold when $n=0$.

Note that the inductive step of a proof by induction works here, but the base case fails.

8 Find $0 \leqslant n<660$ satisfying all the following congruences:

$$
\begin{align*}
n & \equiv 3(\bmod 5) \tag{1}\\
n & \equiv 5(\bmod 11) \tag{2}\\
n & \equiv 4(\bmod 12) \tag{3}
\end{align*}
$$

First we find $0 \leqslant n<55$ satisfying the first two congruences. Observe that $11 \equiv 1(\bmod 5)$, so $5+11 n \equiv n(\bmod 5)$. Therefore, $5+11 \times 3=38$ satisfies the first two congruences.
Now we look for a solution to the two congruences:

$$
\begin{align*}
n & \equiv 38(\bmod 55) \tag{4}\\
n & \equiv 4(\bmod 12) \tag{5}
\end{align*}
$$

Note that $55 \equiv 7(\bmod 1) 2$, so $55 \times 2 \equiv 2(\bmod 12)$. Thus, $38+55(2 n) \equiv$ $2+2 n(\bmod 12)$, so $38+55 \times 2 \equiv 2+2 \equiv 4(\bmod 12)$, so $n=148$ is the solution to the congruences.

