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Mock Midterm Examination
Model Solutions

1 Use Euclid’s algorithm to find the greatest common divisor of the following
pairs of numbers. Write down all the steps involved. Use your calculations
to find integers a and b such that a times the first number plus b times the
second number is their greatest common divisor.

(a) 159 and 265

265 = 159+ 106
159 = 106+ 53
106 = 2x33

Therefore, the greatest common divisor is 53. Working backwards:

53 =159 — 106 = 159 — (265 — 159) = 2 x 159 — 265

So a=2,b=—1 works.

(b) 237 and 115

237 = 2x115+47
115 = 16 x7+3
7T = 2x3+1
3=3x1

Therefore, the greatest common divisor is 1. Working backwards:

1=7-2x3=7-2x(115-16x7)=33x7—-2x115
=33 x(237—-2x115) —2x 115 =33 x 237 — 68 x 115

So a = 33,b = —68 works.



2 Which of the following pairs of propositions are logically equivalent? Jus-
tify your answers.

(a) p— (-pVq) and ~pV q.

The truth tables are as follows:

pla|l-p|-prVqg|p—(pVyg
0[0| 1 1 1
01 1 1 1
10| 0 0 0
1l1]0 1 1

The columns for p — (—pVgq) and —pV g are the same, so they are logically
equivalent.

(b)pA(gVr)and (pAg)V(gAT).

These are not logically equivalent. When p is false, but ¢ and r are both
true, the first proposition is false, but the second is true.

(c) (pV(—q)Ar and (pVq) Ar.

These are not logically equivalent.When p and ¢ are false, but r is true,
the first proposition is true, while the second is false.

3 Find boolean expressions for the following logic circuits.
(a) (PAQ)V (-QA R)
(b) (=PA(QV-R))VR

4 Which of the following are true when A ={0,1,3,5} and B = {1,2,4,6}?
Justify your answers.

(a) (Vx € A)(x +1 € B)

This is true. Forz =0,1 € B; forx =1, 2 € B; for ¢ = 3, 4 € B; and for
r=2>5,6¢€ B.

(b) (3z € A)(z+2¢€ B)
This is true. Let x =0. Then x +2 =2 € B.

(¢) (Vz € A)(3y € B)(x + y is even)



This is true: we can make the following choices for y:

T y k such that x +y = 2k
01246 1,2,3

1 1 1

3 1 2

5 1 3

(d) 3y € B)(Vx € A)(x +y is even)

This is not true, since once y is chosen, we can choose z to make = + y
not even as follows:

y X
1| o
21135
411,35
6| 1,35

5 Use Venn diagrams to show the following arguments are invalid:

(a)
(Ve A)(ze BVze )
(Vx e B)(x € C)
. (Vo € A)(z € B)
C
(b)

(3z € A)(z € B)



(3z € B)(x € C)
S(3xe Az el)

6 Use universal instantiation and rules of inference to show that the follow-
ing arguments are valid.

()

(Vze A)(ze B—xzec()
yeAANyeEB
syed

(Vx € A)(x € B— x € C) Premise

yeANyeB Premise
ye A Specialisation
yeB—-yel Universal instantiation
y€E€B Specialisation
yel Modus ponens

(b)

(Vo € A)(z € BV ¢(x))
(Vz € A)(z € CV —¢(x))



yeAN-yelC
SYyEeEDB

(Vxz € A)(z € CV —¢(x) Premise

yeEAN-yel Premise

yeA Specialisation

y € CV-¢(y) Universal instantiation
-y e’ Specialisation from line 2
—é(y) Elimination

(Vz € A)(x € BV ¢(z)) Premise

y € BV ¢(y) Universal instantiation
yeB Elimination

7 Prove or disprove the following. You may use results proved in the course
or the homework sheets, provided you state them clearly.

(a) /7 is rational.

This is false.

Proof. Suppose /7 were rational. Then it would be % for integers a and

b with b # 0. Now let o’ = o and b = (a—bb). a’ and b are coprime,

and ‘;—,, = /7. We cube both sides to get a’® = 7b">. Thus 7|a’®, and so
we must have 7|a’ (see Sheet 4 Q.3). Therefore, o’ = 7¢ for some integer
c. Hence, (7c)® = 7b3, and so 343c¢® = 7b'3, so 49¢3 = b®. Therefore,
7|b’. This means that 7 is a common divisor of a’ and o’. However, the
greatest common divisor of a’ and b’ is 1. This is a contradiction, so our
assumption that /7 might be rational, must be false. Therefore, ¥/7 must

be irrational O

(b) There is a natural number n such that n? + 4n + 16 is prime.

This is true.

Proof. When n =3, n?+44n+16 = 9 + 12 + 16 = 37, which is prime. O

(c) There is a natural number n such that n? — 169 is prime.

This is false.



Proof. n? — 169 = (n + 13)(n — 13). If neither n + 13 nor n — 13 is +1,
then their product is either composite or 0, so it is not prime. Therefore,
we only need to check the cases when n — 13 = £+1 (n+ 13 is never £1 for
n a natural number, as n+13 > 13). These are n = 12 and n = 14. When
n =12, n? — 169 = 144 — 169 = —25, which is not prime. When n = 14,
n? — 169 = 196 — 169 = 27, which is not prime. Therefore, n? — 169 is
never prime. O

(d) All integers of the form n? +n + 41 are prime for n € N.

This is false.

Proof. When n = 41, n?2 +n + 41 = 412 + 41 x 2 = 41 x 43, which is not
prime. (When n = 40, n? +n + 41 = 40(40 + 1) + 41 = 41 x 41, which is
also not prime.) O

(e) 2135 + 398 1 532 s divisible by 7.

This is true.

Proof. 23 =8 =1 (mod 7). Therefore, for any natural number n, 23" =
1" =1 (mod 7). Hence, 2!3> =1 (mod 7). Similarly, 32 = 9 = 2 (mod 7).
Therefore, for any natural number n, 35" = 23" =1 (mod 7). Therefore,
3% =1 (mod 7), so 3% = 32 x 3% = 32 = 2 (mod 7). Finally, 5% =
25 =4 (mod 7), 53 = 4 x5 = 6 (mod 7), so 5° = 62 = 1 (mod 7).
Therefore, 52 = 15 = 1 (mod 7), so 532 = 5% = 4 (mod 7). Thus,
2135 1 398 + 532 = 14244 =0 (mod 7), so it is indeed divisible by 7. O

(f) n? +2=m®+9 has no integer solutions [Hint: try modulo 11]

This is true.

Proof. Consider squares and fifth powers modulo 11:



n? (mod 11) | n® (mod 11)
0 0
1
10
1
1
1
10
10
10
1
10
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Therefore, modulo 11, n? must be congruent to one of 0,1,3,4,5 and 9,
while m? must be congruent to one of 0,1 and 10. Therefore, n? + 2 will
be congruent to one of 2,3,5,6,7 and 0, while m® + 9 must be congruent
to one of 9,10, and 8. Therefore, the two quantities cannot be congruent
modulo 11, so they cannot be equal. O

(g) For all natural numbers n, >, i3 = nl(nt))?
g » Lui=1" T 1

This is true:

Proof. Induction on n. When n = 0, the sum is empty, so it is 0, while

2 2
IR (n4+1) = 0 also, so the formula works.

Now suppose the formula works for n. We want to show that it works for

n + 1, i.e., we want to show that Z?jol i3 = w. However,
n+1 n 2 2
1
LD SLRTIRELLL LS R,
=0 =0
n? n?+4n+4  (n+1)2%(n+2)?
= 1)2 [ — 1) = 1)? =
(n+)(4+n+) (n+1) 1 1
O
(h) For all natural numbers n, Y ., z‘(z:lu) = B

This is true.

Proof. Induction on n:

When n = 0, the formula obviously works.



Now suppose it works for n. We want to show that it also works for n+1,

i.e. we want to show that 37 i(iil) = 245 Now
i) &) (nr D(n+2)
n 1 _on(n+2)+1  (n+1)?  n+1l

nrl DM it )n+2) meDm+2) 2
0

(i) There are infinitely many primes congruent to 2 modulo 3. [Hint:
suppose there are only finitely many; take the product of all of them. If
this is congruent to 2 modulo 3, then multiply by 2. Add 1 to the resulting
product. You may assume that any number that is congruent to 2 modulo
3 is divisible by a prime number congruent to 2 modulo 3.]

This is true.

Proof. Suppose there are only finitely many primes that are congruent to
2 modulo 3. Let them be p1,ps,...,pr. Now consider the product N =
p1p2 - -+ pk. N is not divisible by 3, since none of the p; is. Therefore, either
N =1 (mod 3) or N =2 (mod 3). In the first case, N +1 =2 (mod 3),
so it must be divisible by some prime that is congruent to 2 modulo 3, but
it cannot be divisible by any prime that is congruent to 2 modulo 3, since
all such primes divide N. In the second case, 2N 4+ 1 = 2 (mod 3), so it
must be divisible by a prime that is congruent to 2 modulo 3. However, it
cannot be divisible by a prime that is congruent to 2 modulo 3, since all
such primes divide 2/N. Therefore, in either case we reach a contradiction,
so our assumption that there were only finitely many such primes must
be false, i.e., there must be infinitely many primes congruent to 2 modulo
3. O

(j) For all natural numbers n, Y i, (i% — 3i) = ”4+2”3_2”2_6"+8

This is false.

. . o mdon®_mn2_
Proof. When n = 0, the sum is empty, so is 0, while 22 —=5n—0n+8

% # 0, so the formula does not hold when n = 0. O

Note that the inductive step of a proof by induction works here, but the
base case fails.



8 Find 0 < n < 660 satisfying all the following congruences:

= 3 (mod 5) (1)
= 5 (mod 11) (2)
n = 4 (mod 12) (3)

First we find 0 < n < 55 satisfying the first two congruences. Observe
that 11 =1 (mod 5), so 5+ 11n = n (mod 5). Therefore, 5+ 11 x 3 = 38
satisfies the first two congruences.

Now we look for a solution to the two congruences:

n 38 (mod 55) (4)

4 (mod 12) (5)

n

Note that 55 = 7 (mod 1)2, so 55 x 2 = 2 (mod 12). Thus, 38 + 55(2n) =
24 2n (mod 12), 50 38+ 55 x 2 =2+ 2 =4 (mod 12), so n = 148 is the
solution to the congruences.



