MATH 2113/CSCI 2113, Discrete Structures II
 Winter 2008

Toby Kenney
Final Examination
Saturday 19th April, 14:00-17:00
Calculators not permitted. Justify all your answers.

Compulsory questions

1 (a) Write down the adjacency matrix for the graph:

(b) The cube of the adjacency matrix is

$$
A^{3}=\left(\begin{array}{ccccc}
26 & 24 & 60 & 45 & 45 \\
24 & 6 & 36 & 53 & 17 \\
60 & 36 & 28 & 40 & 34 \\
45 & 53 & 40 & 24 & 52 \\
45 & 17 & 34 & 52 & 24
\end{array}\right)
$$

(This may be different from the cube of the matrix you wrote down in (a) because the rows and columns may be in a different order.) How many triangles are there in the graph? [Order doesn't matter, so abc and bac count as the same triangle.]

2 I have a standard deck of cards - there are 52 cards: 13 of each suit and 4 of each rank.
(a) If I pick one card from the deck. Are the events "The card is an Ace." and "The card is a spade." independent? Justify your answer fully.
(b) If I pick two cards from the deck without replacement. Are the events "Both of the cards are aces." and "Neither of the cards is a spade." independent? Justify your answer fully.

3 Find a minimum spanning tree for the following graph:

4 I have 6 dice, all fair dice with sides labelled $1,2,3,5,7$, and 11. I roll all 6 and take the product.
(a) How many different products are possible? [Hint: by unique prime factorisation, the only way to get the same product is to roll the same multiset of numbers, possibly in a different order.]
(b) What is the most likely product?

5 Show that if we have 5 triangles in a K_{6}, then some 2 share an edge. [Hint: What is the largest number of triangles that can share a given vertex with no two sharing an edge?]
$6 n$ fair dice are rolled. What is the probability that the highest number rolled is a $4 ?$

7 We 2-colour the edges of a K_{17}. Show that either there is a monochromatic K_{4}, or the red edges form a graph with an Euler circuit. [You may assume that $R(3,4)=9$.] (2 marks)

8 Let p_{n} be the probability of tossing a fair coin n times without getting 2 consecutive heads. Show that $p_{n}=\frac{1}{2} p_{n-1}+\frac{1}{4} p_{n-2}$.

9 (a) Draw two graphs with the same degree sequence which are not isomorphic.
(b) Draw two connected simple graphs with the same degree sequence which are not isomorphic.

10 Let X be a random variable with values from $\{1,2, \ldots, 100\}$ each occuring with probability $\mathbb{P}(X=n)=\frac{1}{100}$. Let Y be the total obtained by rolling 16 independant fair dice and taking the total. What is the probability that $Y \geqslant X$?
[Hint: how is this probability related to $\mathbb{E}(Y)$? Work out the probability conditional on a fixed value of Y first. You may assume that the expectation of a single roll of a fair die is $\frac{7}{2}$.]

11 One person in 100 has a certain disease (i.e.) a randomly chosen person has a 1% (0.01) chance of having the disease, and a 99% (0.99) chance of not having it. There is a test, which when given to a person with the disease has a 90% (0.9) probability of giving a positive result. When given to a person without the disease, it has a $2 \%(0.02)$ probability of giving a positive result. A person is chosen at random and tested.
(a) What is the probability that the test gives a positive result?
(b) Given that the test gives a positive result, what is the probability that the person actually has the disease?

12 2-colour the edges of a K_{7} red with probability $\frac{1}{2}$ and blue with probability $\frac{1}{2}$.
(a) What is the expected number of monochromatic $K_{4,2}$ (complete bipartite graphs on sets of 4 and 2 vertices) - e.g.

(b) Deduce that it is possible to 2 -colour a K_{7} without a monochromatic $K_{2,4}$.

