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6 Suppose we have a cube made of n × n × n smaller cubes (n > 2). We
call a line through the cube a set of n of the smaller cubes such that the
centres of all the smaller cubes are in a straight line. How many lines are
there through the cube?

Solution 1 Imagine that our cube is the middle cube of an (n+2)× (n+
2) × (n + 2) cube. We extend our line to a line of the outer cube. There
is exactly one way to do this, since our line already goes through at least
two points, so its direction is fixed.

The line goes through two of the new cubes. On the other hand, given
one of the new cubes, there is exactly one line through the inner cube that
goes through this cube. Therefore, the number of lines is half the number
of new cubes – i.e. (n+2)3−n3

2 line (= 6n2+12n+8
2 = 3n2 + 6n + 4).

Solution 2 There are 13 possible directions for our line – suppose that the
edges of our cube are along the x, y and z axis. First we consider directed
lines. Then each of the x, y and z coordinates will be increasing, decreasing
or constant. This gives 3 × 3 × 3 = 27 possibilities. However, x, y and z
cannot all be constant, since that would not give a line. Therefore, there
are 26 possible directions for lines, but since our lines are not directed,
we consider one direction the same as the opposite direction, so there are
only 13 possible directions for lines.

3 of these directions have 2 coordinates constant. Lines in these directions
can start at any of the n2 cubes with the appropriate coordinate equal to
0. 6 of the directions have 1 coordinate constant, and they can start at
any of the n cubes on an edge – e.g. the line with increasing x coordinate,
decreasing y coordinate and constant z coordinate can start at any of the
points with x = 0, y = n. The final 4 directions are the diagonals of the
cube, and there is only one line in each such direction. Therefore, the
total number of lines is 3n2 + 6n + 4 (= (n+2)3−n3

2 ).

Compulsory questions

1 Show that
(
2n
n

)
=

∑n
k=0
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n
k

)2.

First we note that
(
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k

)
=

(
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n−k

)
, since choosing a set is equivalent to

choosing its complement. Now by the multiplication rule,
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)
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number of ways of choosing k elements from the first n elements of a 2n-
element set, then choosing n− k elements from the last n elements of this
2n-element set.

When we choose n elements from a 2n-element set X, the number of these
elements that lie among the first n elements of X is some k with 0 6 k 6 n,
and the number of elements that lie among the last n elements is n − k.
Therefore, by the addition rule, the number of ways of choosing n elements
from a set of 2n elements is the sum over k from 0 to n of the number
of ways of choosing these n elements so that exactly k are in the first n
elements of X. This sum is exactly the RHS of the equation we want to
prove.

2 (a) Show that
(
n
a

)(
n−a

b

)
=

(
n

a+b

)(
a+b

a

)
.

Suppose we have a set X of n elements. The LHS is the number of ways
of choosing disjoint subsets A and B of X such that A has a elements
and B has b elements. However, a different way to choose these sets is to
first choose the union A ∪ B, then to choose A. B will then be chosen
automatically as A ∪ B \ A. We can choose the union in

(
n

a+b

)
different

ways, and once we have chosen it, we can choose A in
(
a+b

a

)
different ways,

so by this method, there are
(

n
a+b

)(
a+b

a

)
ways to choose A and B. This is

the RHS. But the number of ways to choose A and B does not depend on
the way in which we choose them, so the LHS and RHS must be equal.

(b) What is
∑n
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k

)
k2? [Hint: k2 = 2
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. By part (a), this is
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+
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)
.

3 How many subsets of {1, 2, . . . , 17} contain at most two multiples of 3?

The set {1, 2, . . . , 17} contains 5 multiples of 3 (3, 6, 9, 12, and 15), and
17− 5 = 12 non-multiples of 3. We can express a subset of {1, 2, . . . , 17}
as a pair consisting of a subset of {3, 6, 9, 12, 15} and a subset of the
complement: {1, 2, 4, 5, 7, 8, 10, 11, 13, 14, 16, 17}. The condition that it
should contain at most 2 multiples of 3 means that the first subset should
have at most 2 elements. There are 16 subsets of a set of size 5 that have
at most 2 elements – We can either work this out as

(
5
0

)
+

(
5
1

)
+

(
5
2

)
= 16,

or we can notice that exactly one of the subset and its complement has at
most two elements, so there are twice as many subsets of a 5-element set
as there are subsets with at most two elements: divide the collection of
all subsets of a 5-element set into complementary pairs, one of each such
pair will have size at most two. There are 32 subsets of a 5-element set,
so there are 16 subsets with size at most two.

For each of these 16 subsets of {3, 6, 9, 12, 15}, we can choose any of the
212 = 4, 096 subsets of the 12 non-multiples of 3. This gives a total of
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16 × 212 = 216 = 65, 536 subsets of {1, 2, . . . , 17} that contain at most 2
multiples of 3.

4 (a) How many solutions are there to x1 + x2 + x3 + x4 = 18 where x1, x2,
x3 and x4 are natural numbers ({0, 1, 2, 3, . . .})?
We can represent a solution to this equation by drawing x1 dots, then
drawing a vertical line, then drawing x2 dots, then another vertical line,
then x3 dots, then another vertical line, then finally x4 dots. In total,
there will be 18 dots and 3 vertical lines. The vertical lines can be in
any 3 positions – given 3 positions for the vertical lines, x1 is the number
of dots before the first, x2 is the number of dots between the first and
second vertical lines, x3 is the number of dots between the second and
third vertical lines, and x4 is the number of dots to the right of the third
vertical line.

There are 21 symbols in total, and 3 of them are vertical lines, so there
are

(
21
3

)
possible ways of placing the vertical lines. Therefore there are(

21
3

)
(=1330) solutions.

(b) How many solutions are there to x1 + 2x2 + 3x3 = 10 for x1, x2 and
x3 natural numbers?

For this question, an approach like the one in part (a) cannot be applied,
so we have to solve it directly by looking at the possibilities:

First we observe that 3x3 6 10, so x3 is at most 3. If x3 = 0, then x2 can
be anything from 0 to 5, and then x1 is fixed, so there are 6 solutions with
x3 = 0. If x3 = 1, we need x1 + 2x2 = 7, so x2 can be anything from 0 to
3, and then x1 is fixed, so there are 4 solutions with x3 = 1. If x3 = 2, x2

can be anything from 0 to 2, so there are 3 solutions. Finally if x3 = 3,
then x2 must be 0, so there is only 1 solution with x3 = 3.

Therefore, by the addition rule, there are 6 + 4 + 3 + 1 = 14 solutions.

5 (a) In a class with 13 students, there are 5 mathematicians and 8 computer
scientists. How many subsets of the students in the class contain the same
number of mathematicians and computer scientists? [Hint: The easy way
to answer this question involves considering a different set from the set to
be chosen (but related to it).]

Solution 1: The number of mathematicians can be anything from 0 to 5.
The number of subsets with i mathematicians and i computer scientists
is

(
5
i

)(
8
i

)
. Therefore, the number of subsets with the same number of

mathematicians and computer scientists is
(
5
0
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8
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)
+
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+
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+
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)
+(

5
4
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8
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)
+

(
5
5

)(
8
5

)
. (This is 1×1+5×8+10×28+10×56+5×70+1×56 = 1287.

In fact, we can factor, 1287 = 9× 143 = 9× 11× 13 =
(
13
5

)
.)

Solution 2: Instead of the subset A containing the same number of math-
ematicians and computer scientists, consider the set A′ containing all the
computer scientists in A, and all the mathematicians not in A. The num-
ber of mathematicians in A′ is 5 minus the number of mathematicians in
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A. The number of mathematicians in A is the same as the number of
computer scientists in A, which is also the number of computer scientists
in A′. Therefore, the total number of students in A′ is 5. On the other
hand, given a subset B containing 5 students, there are as many com-
puter scientists in B as there are mathematicians not in B, so any subset
B of 5 students occurs as A′ for some subset A with the same number of
mathematicans and computer scientists.

Therefore, the number of subsets with the same number of mathemati-
cians and computer scientists is the same as the number of subsets with
5 members, so there are

(
13
5

)
such subsets (or 1287).

Bonus question

(b) How many contain at least as many mathematicians as computer sci-
entists? [Hint: This question will be a lot easier if you can find a simple
explanation for why the solution to part (a) is what it is.]

Following Solution 2 to part (a), we let A be the subset chosen, and
consider the set A′ of computer scientists in A and mathematicians not
in A. A′ has at most 5 members, and given a subset with at most 5
members, it occurs as such an A′, so the total number of such sets is(
13
0

)
+

(
13
1

)
+

(
13
2

)
+

(
13
3

)
+

(
13
4

)
+

(
13
5

)
. (This is 1+13+78+286+715+1287 =

2380.)
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