MATH 2113/CSCI 2113, Discrete Structures II
 Winter 2008

Toby Kenney
Homework Sheet 2
Due in: Wednesday 23rd January, 1:30 PM

Compulsory questions

1 Show that $\binom{2 n}{n}=\sum_{k=0}^{n}\binom{n}{k}^{2}$.
2 (a) Show that $\binom{n}{a}\binom{n-a}{b}=\binom{n}{a+b}\binom{a+b}{a}$.
(b) What is $\sum_{k=1}^{n}\binom{n}{k} k^{2}$? [Hint: $k^{2}=2\binom{k}{2}+\binom{k}{1}$.]

3 How many subsets of $\{1,2, \ldots, 17\}$ contain at most two multiples of 3 ?
4 (a) How many solutions are there to $x_{1}+x_{2}+x_{3}+x_{4}=18$ where x_{1}, x_{2}, x_{3} and x_{4} are natural numbers $(\{0,1,2,3, \ldots\})$?
(b) How many solutions are there to $x_{1}+2 x_{2}+3 x_{3}=10$ for x_{1}, x_{2} and x_{3} natural numbers?

5 (a) In a class with 13 students, there are 5 mathematicians and 8 computer scientists. How many subsets of the students in the class contain the same number of mathematicians and computer scientists? [Hint: The easy way to answer this question involves considering a different set from the set to be chosen (but related to it).]

Bonus question

(b) How many contain at least as many mathematicians as computer scientists? [Hint: This question will be a lot easier if you can find a simple explanation for why the solution to part (a) is what it is.]

