MATH 2113/CSCI 2113, Discrete Structures II Winter 2008

Toby Kenney
Homework Sheet 5
Due: Wednesday 13th February: 1:30 PM

Compulsory questions

1 Let a_{n} be defined recursively by $a_{n}=\sum_{i=1}^{n} \frac{a_{n-i}(-1)^{i-1}}{i!}$ for $n \geqslant 1$, and $a_{0}=1$.
(a) Find the generating function for a_{n}.
(b) Find a general formula for a_{n}.

2 (a) Find a recurrence relation for the number of ways to tile a $3 \times n$ chessboard with 3×1 blocks.
(b) Find a recurrence relation for the number of ways to tile a $3 \times n$ chessboard with 3×1 and 3×2 blocks.

3 We have a sequence of n tiles that we want to paint with 4 colours: red, green, blue and yellow, in such a way that no two adjacent tiles are the same colour, and no two adjacent pairs of tile have the same colours - so for example RGBGB would not be a valid colouring, since the sequence GB is repeated.
(a) Find a recurrence relation for the number of valid colourings.
(b) Solve your recurrence relation to get an explicit formula.

4 Define the sequence a_{n} recursively by $a_{0}=0$ and $a_{n+1}=2 a_{n}+(n+1)^{2}$ for $n \geqslant 0$.
(a) Find the generating function for a_{n}.
(b) Expand the generating function as a partial fraction.
(c) Use this to find the a_{n}.

