MATH 2113/CSCI 2113, Discrete Structures II Winter 2008

Toby Kenney Homework Sheet 5

Due: Wednesday 13th February: 1:30 PM

Compulsory questions

- 1 Let a_n be defined recursively by $a_n = \sum_{i=1}^n \frac{a_{n-i}(-1)^{i-1}}{i!}$ for $n \ge 1$, and $a_0 = 1$.
 - (a) Find the generating function for a_n .
 - (b) Find a general formula for a_n .
- 2 (a) Find a recurrence relation for the number of ways to tile a $3\times n$ chessboard with 3×1 blocks.

(b) Find a recurrence relation for the number of ways to tile a $3 \times n$ chessboard with 3×1 and 3×2 blocks.

- 3 We have a sequence of n tiles that we want to paint with 4 colours: red, green, blue and yellow, in such a way that no two adjacent tiles are the same colour, and no two adjacent pairs of tile have the same colours so for example RGBGB would not be a valid colouring, since the sequence GB is repeated.
 - (a) Find a recurrence relation for the number of valid colourings.
 - (b) Solve your recurrence relation to get an explicit formula.
- 4 Define the sequence a_n recursively by $a_0 = 0$ and $a_{n+1} = 2a_n + (n+1)^2$ for $n \ge 0$.
 - (a) Find the generating function for a_n .
 - (b) Expand the generating function as a partial fraction.
 - (c) Use this to find the a_n .