# MATH 2113/CSCI 2113, Discrete Structures II <br> Winter 2008 

Toby Kenney
Homework Sheet 8
Due: Wednesday 26th March: 1:30 PM

## Compulsory questions

1 Find minimal spanning trees for the following graphs:
(a)

(b)


2 How many spanning trees are there for the following graph?


3 (a) What is the minimum number of cycles that a graph with 5 vertices and 6 edges can have? Justify your answer.
(b) Draw a graph with 5 vertices, 6 edges and the number of cycles in your answer to (a). [Careful - it's easy to draw a graph with too many cycles.]

4 (a) How many trees are needed to cover all the edges of $K_{5}$ (the complete graph on 5 vertices)? i.e. we want a collection of trees with vertices chosen from the vertices of our $K_{5}$, such that the union of their edges is the collection of all edges of the $K_{5}$. Justify your answer.
(b) Draw a collection of this many trees that cover the edges of the $K_{5}$.

5 Let $T$ be a tree with $n \geqslant 3$ vertices. Let $G$ be a graph obtained by adding one new edge to $T$. Show that $G$ contains exactly one cycle.

