
MATH 2113/CSCI 2113, Discrete Structures II
Winter 2008
Toby Kenney

Mock Final Examination
Time allowed: 3 hours

Justify all your answers. There are deliberately more than 3 hours worth
of questions here to give you a wider variety of questions. There are also more
questions on the later half of the course, and particularly on Ramsey theory
than there are likely to be in the final exam.

Compulsory questions

1 Deduce the finite version of Ramsey’s theorem from the infinte version.

We prove this by contradiction. Suppose that there are k and m such that
for every N , there is a 2-colouring of the edges of a KN without a red Kk

or a blue Km. We will use these to construct a 2-colouring of the edges
between natural numbers without a red Kk or a blue Km. Observe that
if we have a 2-colouring of a KN without a red Kk or a blue Km, and
we restrict to some n < N vertices, we get a 2-colouring of Kn without a
red Kk or blue Km. Given a 2-colouring c of a Kn without a red Kk or
blue Km, we can ask for what N is there a 2-colouring c of a KN without
a red Kk or blue Km, such that c is a restriction of c. Since there are
colourings of KN without a red Kk or blue Km, for arbitrarily large N ,
and there are only finitely many possible colourings of edges of a Km, one
of these colourings must be a restriction of a colouring of a KN without
a red Kk or blue Km for arbitrarily large N . For the same reason, one
of the extensions of this colouring to a colouring of edges of a Kn+1 must
be a restriction of a colouring of a Kn without a red Kk or blue Km for
arbitrarily large N . We will choose a sequence of colourings c0, c1, . . .,
where each colouring ci is a colouring of Ki that extends the colouring
ci−1, and that is a restriction of colourings of KN without a red Kk or
blue Km, for arbitrarily large N . Given this sequence, we can put all
of these colourings together to get a 2-colouring of edges of the complete
graph on N – colour every edge the colour it is coloured in the colouring
where it first appears. This has no red Kk or blue Km, since any red Kk

or blue Km would have to occur within the first N vertices for some N ,
and then cN would have either a red Kk or blue Km.

2 A biassed coin with probability 0.3 of getting a head is tossed 50 times.
What is the expected number of occurences of the sequence “HTTHH”?

The first toss in this sequence “HTTHH” can be anything from the 1st
to the 46th toss. For each case, the probability that this sequence occurs
starting from this toss is 0.3×0.7×0.7×0.3×0.3 = 0.01223. The expected
number of occurrences of this sequence is therefore 46×0.01223 = 0.56258.
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3 How many non-identical ways are there to colour the sides of a square
with 3 colours, where we count rotations as identical, but not reflections.
First, we count the number of times each colour occurs, and then for each
pattern, we can count the number of ways of arranging it.
If three colours are used, they must be used 2,1,1. There are 3 choices for
which colour is used twice. Then the two occurences of this colour can be
either adjacent or opposite. If they are adjacent, then the choice of which
way the other two colours are used makes a difference, so there are 2 ways.
If they are opposite, then the two arrangements of the other 2 colours are
rotation of each other, so they count as the same. This gives a total of
3× 3 = 9 colourings of the form 2,1,1.
If only two colours are used, they can either be 3,1 or 2,2. If they are
3,1, then only the choice of which colours to use matters, so there are
6 colourings. If they are 2,2, then the pairs can either be opposite or
adjacent, so there are 2 possibilities, but when choosing colours, only the
colour that is not used matters, so there are 3 choices of colours, making
a total of 6 colourings.
Finally, if only one colour is used, all that matters is the choice of colour,
so there are 3 possible colourings.
This is a total of 9 + 6 + 6 + 3 = 24 colourings.

4 Find minimal spanning trees for the following graphs:
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5 A fair die is rolled repeatedly until a 6 is rolled. What is the expected
number of rolls required before a 6 is rolled?
Let X be the number of rolls until a 6 is rolled. In order for X = n, we
must have that the first n − 1 rolls are all not 6, and that the nth roll is
a 6. The probability of this is

(
5
6

)n−1 (
1
6

)
. Therefore, the expected value

of X is
1
6

∞∑
n=1

n

(
5
6

)n−1

If we let f(x) = 1
1−x =

∑∞
n=0 xn, then f ′(x) = 1

(1−x)2 =
∑∞

n=1 nxn−1, so

E(X) =
1
6
f ′

(
5
6

)
= 6
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Alternatively, if we let Y be the number of rolls to get a 6 after the first,
then X and Y have the same distribution, and

X =
{

1 if the first roll is a 6
Y + 1 otherwise

So E(X) = 1
6 + 5

6E(Y + 1) = 1
6 + 5

6 (E(Y ) + 1) = 1
6 + 5

6 (E(X) + 1) This
gives 1

6E(X) = 1, or E(X) = 6.

6 (a) Write down the adjacency matrix for the graph:
v

@@
@@

@@
@ . .

. . .

The matrix is:

A =


0 1 1 1 1 0
1 0 0 0 1 0
1 0 0 0 0 1
1 0 0 0 0 1
1 1 0 0 0 1
0 0 1 1 1 0


(b) How many walks of length 8 are there starting and ending at v?

A2 =


4 1 0 0 1 3
1 2 1 1 1 1
0 1 2 2 2 0
0 1 2 2 2 0
1 1 2 2 3 0
3 1 0 0 0 3



A4 =


27 10 3 3 8 22
10 9 8 8 8 8
3 8 13 13 15 1
3 8 13 13 15 1
8 8 15 15 19 4
22 8 1 1 4 19



A8 =


1395 648 381 381 626 800
648 437 438 438 576 492
381 438 637 637 767 235
381 438 637 637 767 235
626 576 767 767 955 422
800 492 235 235 422 927


So there are 1395 such walks.
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(c) Does the graph have an Euler Circuit?

It does not have an Euler circuit because it has a vertex of degree 3, which
is odd.

(d) Does it have a Hamiltonian cycle?

It does not have a Hamiltonian cycle. If it does, then we can find a
Hamiltonian cycle starting and ending at v. Let w be the bottom right
vertex. The two vertices of degree 2 are both adjacent to v and w, so in
a Hamiltonian cycle, their neighbours would have to be v and w. This
means that w must occur as both the third and the third-last vertex in
the Hamiltonian cycle. However, there are 7 vertices in the cycle, so the
third and third-last vertices should be different.

7 A fair die is rolled, and the result is used to select a number of coins to
toss – e.g. if a 3 is rolled, we toss 3 coins. What is the probability that
the die roll was a 4 given that there were exactly 2 heads among the coins
tossed?

The probability that we roll n then get exactly 2 heads is 1
6

(
1
2

)n (
n
2

)
.

Therefore, the total probability that we get exactly 2 heads is

1
6

(
1
4

+
3
8

+
6
16

+
10
32

+
15
64

)
=

1
6
× 16 + 24 + 24 + 20 + 15

64

The probability that we roll a 4 and get exactly 2 heads is 1
6×

6
16 = 1

6×
24
64 .

The probability that we rolled a 4 given that we got 2 heads is

1
6 ×

24
64

1
6 ×

16+24+24+20+15
64

=
24

16 + 24 + 24 + 20 + 15
=

24
99

=
8
33

8 Show that any 2-colouring of a K6 actually has 2 monochromatic triangles.
[Hint: we know it must have one. Let it be v1, v2, v3, and w.l.o.g., let it be
red. Consider cases:

1. There are no red edges wvi where w is not one of the vi.

2. There is a w not one of the vi with exactly one red edge wvi, and the
two edges from w to vertices outside the triangle are both red.

3. There is a w not one of the vi with exactly one red edge wvi, and one
of the two edges from w to a vertex outside the triangle is blue.

4. There are red edges wvi and wvj for w not one of the vi.]

As in the hint, let v1, v2, v3 be a red triangle. Let the other 3 vertices be
w1, w2, w3. Suppose there are no red edges wivj , then all edges v1wi are
blue; if any edge wiwj is blue, then v1, wi, wj forms a second monochro-
matic triangle, while if no edge wiwj is blue, then they are all red, and
w1, w2, w3 form a red triangle.

Now suppose there is exactly one red edge from w1 (w.l.o.g.) to some vi,
and the edges w1w2 and w1w3 are also red. Now again, if any of the edges
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w2vi, w2w3 or w3vi is red, then we get a red triangle. Otherwise, we get
a blue triangle.

Next suppose there is exactly one red edge from w1 (w.l.o.g) to v1 (w.l.o.g),
and the edges w1w2 (w.l.o.g.), w1v2 and w1v3 are all blue. Now a blue
edge between any two of w2, v2, v3 will give a blue triangle, while if the
edges between them are all red, then they form a red triangle.

Finally, suppose two of the edges wjvi for some fixed j are red, then they
form a red triangle with the edge between the v.

9 (a) Show that whenever we 4-colour the edges of a K66, we always get a
monochromatic triangle.

We know that whenever we 3-colour the edges of a K17, we always get a
monochromatic triangle. Pick a vertex of the K52. It has 65 neighbours,
so there must be some colour (w.l.o.g. red) such that it has at least 17
neighbours of that colour. If any of the edges between its red neighbours
is also red, then we get a red triangle. If not, then we have a 3-colouring
of a K17, which we know must yield a monochromatic triangle.

(b) What is the expected number of monochromatic triangles?

Any triangle has probability 1
16 of being monochromatic – once a colour

is chosen for the first edge, there is a 1
4 probability of each other edge

being the same colour. There are
(
66
3

)
triangles, so the expected number

of monochromatic triangles is (66
3 )
16 (= 2860).

10 How many 4-digit numbers counting numbers with leading zeros, contain
at least one of the digits 1 and 2.

There are 104 4-digit numbers in total. Of these, 84 use only the digits
0, 3, 4, 5, 6, 7, 8, 9, so there are 104−84 = 5904 4-digit numbers that contain
at least one of the digits 1 and 2.

11 If we 2-colour a Kn, must there be a monochromatic spanning tree?

A graph has a spanning tree if and only if it is connected, so this question
is asking whether we can 2-colour a Kn in such a way that neither the
graph on the red edges nor the graph on the blue edges is connected.

Suppose the red edges do not form a connected graph. Then we can
partition the vertices as the disjoint union of two non-empty sets A and
B, such that all red edges are either between two vertices in A or two
vertices in B. This means that any edge from a vertex in A to a vertex
in B is blue. This forces the blue graph to be connected, since if we let v
be a vertex in A and w a vertex in B, then given any two vertices x and
y. If x ∈ A and y ∈ B or vice versa, then the edge xy is blue. If they are
both in B, then xv and yv are both blue, so there is a path of length 2.
If they are both in A, then xw and yw are both blue, so there is a path
of length 2.
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(b) What if we 3-colour it?

If n > 2, then we can 3-colour Kn without a monochromatic spanning tree
– Pick two vertices v and w, colour the edge vw green, colour all other
edges from v red, and all other edges from w blue. Colour the other edges
in any way. There is now no red or blue path from v to w, since there is
no red edge to v and no blue edge to w. If u is some other vertex, then
there is no green path from v to u, since there are no green edges from v
or w to any other vertex.

12 3 fair dice are rolled. One is red; one is green and one is blue.

(a) What is the probability that red 6 green 6 blue.

The number of rolls with red 6 green 6 blue is
(
8
3

)
– either add one to

the green die and 2 to the blue die to get 3 different numbers from 1 to 8,
or view

The probability that red 6 green 6 blue is therefore (8
3)

216 = 56
216 = 7

27

(b) What is the probability that blue < green given that red 6 green?

The probability that red 6 green is (7
2)
36 = 7

12 . The probability that green 6

blue given that red 6 green is therefore
7
27
7
12

= 12
27 = 4

9 . Therefore, the

probability that blue < green given that red 6 green is 5
9 .

13 Show that at least 4 trees are required to cover all edges of K8?

A tree on some of the vertices of a K8 has at most 8 vertices, so it has
at most 7 edges. K8 has

(
8
2

)
= 28 edges. Therefore, at least 4 trees are

required to cover all the edges.

14 Two players play a game: player A rolls a fair die and scores the result
of the roll. Player B tosses 6 fair coins and records the number of heads.
Player B wins if his score is greater than or equal to A’s score. What is
the probability that B wins.

Let H be the number of heads that B rolls. The probability that B wins
if X = n is n

6 . Therefore, the probability that B wins is

1
6

6∑
i=1

iP(X = i) =
1
6

E(X)

Note that X is just the sum of the number of heads rolled with each coin,
so E(X) = 6× 1

2 = 3. Therefore, P(B wins) = 3
6 = 1

2 .

15 Let pn be the probability of tossing a fair coin n times without getting 4
consecutive heads. Show that pn = 1

2pn−1 + 1
4pn−2 + 1

8pn−3 + 1
16pn−4.

To roll n times without getting 4 consecutive heads, consider all the rolls
since the last tail. There are 4 possibilities: “T”, “TH”, “THH” and
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“THHH”. The first of these has probability 1
2pn−1, the second has proba-

bility 1
4pn−2, the third has probability 1

8pn−3, and the fourth has proba-
bility 1

16pn−4. They are mutually exclusive, so

pn =
1
2
pn−1 +

1
4
pn−2 +

1
8
pn−3 +

1
16

pn−4
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