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Toby Kenney

Sample Final Examination
This practice exam deliberately has more questions than the real
exam. Some of the theoretical questions are directly from the

notes, and some are new, requiring a little thought. The questions
from the notes are intended to provide a complete list of theorems
from the last part of the course that you might be asked to prove.
These questions deliberately focus on the part of the course after
the midterm, because there are already a number of practice

questions available on the material before the midterm.

Basic Questions

1. Which of the following pairs of numbers are conjugate over Q?

(a)
√

3 and
√

3i

These are not conjugate, because Irr(
√

3,Q) = x2 − 3, and Irr(
√

3i,Q) =
x2 + 3.

(b)
√

2 +
√

3 and
√

2−
√

3

These are conjugate, because (
√

2+
√

3)2 = 5+2
√

6, so Irr(
√

2+
√

3,Q) =
x4 − 10x2 + 1, which has

√
2−
√

3 as a zero.

(c) 5
√

3 and − 5
√

3.

These are not conjugate, because Irr( 5
√

3,Q) = x5− 3, but Irr(− 5
√

3,Q) =
x5 + 3

2. Which of the following pairs of numbers are conjugate over Q(
√

2)?

(a) 3
√

3 and 3
√

3
(
− 1

2 +
√
3
2 i
)

These are conjugate over Q(
√

2), since they both have irreducible polyno-
mial x3 − 3.

(b) 4
√

2 and 4
√

2i

These are not conjugate over Q(
√

2), since Irr( 4
√

2,Q(
√

2)) = x2 −
√

2,
which does not have 4

√
2i as a zero.

3. In Q( 4
√

3, i), what is the fixed field of the automorphism σ which leaves Q
fixed, and sends 4

√
3 to − 4

√
3 and sends i to −i.

We know that Q( 4
√

3, i) is a normal extension of Q. The automorphism σ
has order 2, so it generates a subgroup of index 4 ofG(Q( 4

√
3, i)/mathbbQ).

Therefore, the fixed field has degree 4 over Q. We see that 4
√

3i is left fixed
by σ, but [Q( 4

√
3i) : Q] = 4, so Q( 4

√
3i) is the fixed field of σ.
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4. Let α be a zero of x4 + 3 in GF(54).

(a) Let σ5 be the Frobenius automorphism. Compute σ5
2(α) [Give your

answer in the basis {1, α, α2, α3}.]
Since α is a zero of x4 + 3, we have α4 = 3. Therefore, σ5(α) = 3α and
σ5

2(α) = 4α.

(b) What is the fixed field of σ5
2?

We know that the Galois group of GF(54) is cyclic of order 4 generated
by σ5, so the subgroup generated by σ5

2 has index 2. Therefore, the fixed
field of σ5

2 is GF(52), which consists of the zeros of x25 − x. We see that
α16 = 1, so (α2)24 = 1, so the fixed field is Z3(α2).

Alternatively: We know that σ5
2(α) = 4α and so σ5

2(α2) = (4α)2 = α2,
so the fixed field is Z3(α2).

5. Find an element α such that Q(
√

2 +
√

3,
√

3 +
√

5) = Q(α) [Hint: to
calculate differences between conjugates, try squaring the difference.]

We can choose α =
√

2 +
√

3 + a
√

3 +
√

5 for any a which is not equal

to βi−β
γj−γ for any conjugates βi of β =

√
2 +
√

3 and γj of γ =
√

3 +
√

5.

The conjugates of β are −
√

2 +
√

3,
√

2−
√

3 and −
√

2−
√

3, and the

conjugates of γ are −
√

3 +
√

5,
√

3−
√

5, −
√

3−
√

5. We observe that

(
√

2 +
√

3−
√

2−
√

3)2 = 2, (
√

2 +
√

3+
√

2−
√

3)2 = 6, while (
√

3 +
√

5−√
3−
√

5)2 = 2, (
√

3 +
√

5 +
√

3−
√

5)2 = 10 [other conjugates pro-
duce differences not in the intersection of the fields]. This means we
must choose a 6= 1, 3, 0.2, 0.6. For example, we can choose α = 2, so

α =
√

2 +
√

3 + 2
√

3 +
√

5 works.

6. Find a basis for the splitting field of x4 − 3 over Q.

The zeros of x4 − 3 are 4
√

3, 4
√

3i, − 4
√

3 and − 4
√

3i. The splitting field is
therefore Q( 4

√
3, i). One basis is {1, i, 4

√
3, 4
√

3i,
√

3,
√

3i, 4
√

27, 4
√

27i}.

7. Let f be an irreducible polynomial of degree 4 over a field F . Let K be the
splitting field of f over F . Let the zeros of f be α, β, γ and δ. What is
the orbit of αβγ + δ under G(K/F ).

The automorphisms in G(K/F ) permute α, β, γ and δ. The orbit of
αβγ + δ is therefore {αβδ + γ, αγδ + β, βγδ + α}. [It is the whole of this
set because G(K/F ) is a transitive permutation group on α, β, γ and δ.]

8. Write a
b + b

a + a
c + c

a + a
d + d

a + b
c + c

b + b
d + d

b + c
d + d

c as a rational function in
the elementary symmetric functions a+b+c+d, ab+ac+ad+bc+bd+cd,
abc+ abd+ acd+ bcd and abcd.

First we multiply through by abcd to get a2cd+b2cd+a2bd+c2bd+a2bc+
d2bc+ b2ad+ c2ad+ b2ac+d2ac+ c2ab+d2ab = (a+ b+ c+d)(abc+abd+
acd+ bcd)− 4abcd. Therefore, the expression is s1s3

s4
− 4.
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9. How many extension fields of Q are contained in the splitting field of
f(x) = x4 − 7?

By Eisenstein’s criterion, f is irreducible. The splitting field is Q( 4
√

7, i).
The zeros of f are ± 4

√
7 and ± 4

√
7i. Any automorphism of the splitting

field must preserve these two opposite pairs that sum to zero, so the Galois
group is D4. Extension fields contained in the splitting field are in one-to-
one correspondence with subgroups of D4. There are 10 subgroups of D4

(including the trivial and improper subgroups), so there are 10 extension
fields contained in the splitting field of f (including the splitting field itself,
and Q).

10. (a) Is the regular 36-gon constructible?

No because 36 is divisible by 32.

(b) Is the regular 60-gon constructible?

Yes, since 60 = 22 × 3× 5, and 3 and 5 are both Fermat primes.

11. Find Φ26(x) over Q.

We know that x26− 1 = (x13− 1)(x13 + 1) = (x13− 1)(x+ 1)(x12− x11 +
x10− x9 + x8− x7 + x6− x5 + x4− x3 + x2− x+ 1), and that φ(26) = 12,
so Φ26(x) = x12−x11 +x10−x9 +x8−x7 +x6−x5 +x4−x3 +x2−x+ 1.

bonus Is f(x) = x5− 15x4 + 90x3− 270x2 + 405x− 245 solvable by radicals over
Q?

Yes. f(x) = (x−3)5−2, so the zeros are 3 + ζn 5
√

2, where ζ is a primitive
fifth root of unity.

12. Is f(x) = x5 + x3 + 2x+ 3 solvable by radicals over Z7?

Yes — any finite field consists of zeros of xq − x, so all non-zero elements
are zeros of xq−1 − 1, so it is a cyclotomic extension of the base field, so
it is solvable by radicals.

13. Let α be a zero of x3 + 2x2 + x + 1 over Z3. What are the conjugates of
α over Z3.

By long division, x3 +2x2 +x+1 = (x−α)(x2 +(α+2)x+(α2 +2α+1)),
so the other zeros are the zeros of x2 + (α+ 2)x+ (α2 + 2α+ 1), which by
the quadratic formula are (α + 2) ±

√
2α. We know that α26 = 1, and if

2α is to be a square, then we must have α13 = 2, so that
√

2α = α7. We
then compute α6 = α4 +α3 +2α2 +2α+1 = 2α3 +α2 +α+1 = 2α+2, so
α7 = 2α2 + 2α. We check that the square of this is indeed 2α. This gives
that the two conjugates of α are α+ 2± (α2 +α), which gives α2 + 2α+ 2
and 2α2 + 2.

14. What are the conjugates of
√√

2 + 1 over Q?

We see that
√√

2 + 1 is a zero of x4 − 2x2 − 1 over Q. The other zeros

are −
√√

2 + 1,
√√

2− 1i and −
√√

2− 1i, so these are the conjugates

of
√√

2 + 1.
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15. What is the degree of the splitting field of x3 + 2x2 + 6x− 2 over Q?

Let the zeros of x3+2x2+6x−2 be α, β and γ. We have that s1 = α+β+
γ = −2, while s2 = αβ + αγ + βγ = 6, so α2 + β2 + γ2 = s1

2 − 2s2 = −8.
Since this is negative, the polynomial must have complex zeros, so the
group of the splitting field must include complex conjugation, which has
order 2, so it must be the whole of S3. Therefore, the degree of the splitting
field over Q is 6.

Theoretical Questions

Results from Notes

16. Show that if α and β are elements of F , show that there is an isomorphism
σ : F (α) // F (β) such that σ(a) = a for all a ∈ F and σ(α) = β, if
and only if α and β are conjugate over F .

Suppose the irreducible polynomial f for α has degree n over F . Since f
has coefficients in F , we know that f(σ(α)) = σ(f(α)) = σ(0) = 0, so σ(α)
must be conjugate to α. On the other hand, suppose α′ is another zero
of f . In this case F (α) and F (α′) are both isomorphic to F [x]/〈f〉, since
we know that 〈f〉 is the kernel of the evaluation homomorphism at α and
the evaluation homomorphism at α′. It is easy to see that the composite
of one homomorphism with the inverse of the other gives an isomorphism
F (α) // F (α′).

17. Show that the set of elements of a field E left fixed by a set S of automor-
phisms of E is a subfield of E.

Let F be the set of elements left fixed by all automorphisms in S. We
need to show that F is closed under addition, multiplication, additive and
multiplicative inverses. We already know that 0 and 1 are fixed by all
automorphisms, as are all elements in the prime field so F must contain
the prime field of E. F is closed under addition and multiplication, since
if σ leaves α and β fixed then σ(α + β) = σ(α) + σ(β) and σ(αβ) =
σ(α)σ(β) = αβ. F is closed under additive inverses because these are just
multiplication by −1. Finally we know that σ(α−1) = σ(α)−1 = α−1, so
F is closed under multiplicative inverses. Thus F is a subfield of E.

18. Let E be a field, and let F be a subfield of E. Show

(a) the set of automorphisms of E forms a group under function compo-
sition.

We know that function composition is associative, so we just need to show
that the composite of two automorphisms is an automorphism, the identity
function is an automorphism and the inverse of an automorphism is an
automorphism. These properties are clearly true for bijections, so we just
need to show the necessary homomorphism properties. If ι is the identity
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function, then we know that ι(α+ β) = α+ β = ι(α) + ι(β) and ι(αβ) =
αβ = ι(α)ι(β). If σ is an automorphism of E, then σ(σ−1(α) +σ−1(β)) =
σ(σ−1(α)) +σ(σ−1(β)) = α+β, so σ−1(α+β) = σ−1(α) +σ−1(β), and a
similar argument for multiplication. Finally, we know that the composite
of two homomorphisms is a homomorphism.

(b) the subset of automorphisms of E that leave F fixed is a subgroup of
this group.

We need to show that if σ and τ leave F fixed, then σ−1 and στ leave F
fixed, and also that the identity function leaves F fixed. For any α in F ,
we know that σ(α) = α, so σ−1(α) = α, and στ(α) = σ(τ(α)) = σ(α) = α
as required. The identity obviously leaves F fixed.

19. Let F be a finite field of characteristic p. Show that the map σp : F // F
given by σp(x) = xp is an automorphism of F .

Clearly, σp(αβ) = σp(α)σp(β), and σp(α+β) =
∑p
i=0

(
p
i

)
αiβp−i. However,

in characteristic p, we have that
(
p
i

)
= 0 for any i 6= 0, p, so we get

σp(α+β) = αp +βp = σp(α) +σp(β), so σp is a homomorphism. To show
it is an isomorphism, we just need to show it has an inverse. However, if F
has pn elements, then all of them are zeros of xp

n−x, so σp
n(α) = αp

n

= α,
so σp

n−1 is an inverse of σp, so it is an automorphism.

20. Let E be a finite extension of F , and let σ : F // F ′ be an isomorphism.
Show that there is an isomorphism σ̂ : E //E′, where E′ is a subfield

of F ′ and such that for all a ∈ F , we have σ̂(a) = σ(a).

Since E is a finite extension, of F , we have E = F (α1, . . . , αn) for some
α1, . . . , αn. It is clear that if we can prove the result for simple extensions,
then the whole result follows by induction, so let E = F (α). Let f =
Irr(α, F ), and let σ(f) be the polynomial in F ′[x] obtained by applying σ
to each coefficient of f , that is if f(x) = a0 + . . .+ anx

n, then σ(f)(x) =
σ(a0)+ . . .+σ(an)xn. Let α′ be a zero of σ(f) in F ′. We can define a ring
isomorphism F [x] // F ′[x] extending σ, in the obvious way. This clearly
produces an isomorphism F [x]/〈f〉 // F ′[x]〈σ(f)〉, and composing with
isomorphisms between these fields and F (α) and F (α′) respectively, we
get the isomorphism σ̂.

21. Show that if F 6 E 6 K then {K : F} = {K : E}{E : F}.
Given an isomorphism σ : F // F ′, there are {E : F} isomorphisms

from E to a subfield of F ′ that extend σ. Each of these can be extended
to {K : E} different isomorphisms from K to a subfield of F ′. No two of
these extensions can be the same, because they have different restrictions
to E. This gives {K : E}{E : F} isomorphisms from K to a subfield of F ′.
Conversely, given an isomorphism from K to a subfield of F ′ that extends
σ, its restriction to E is an isomorphism from E to a subfield of F ′, so it
is one of the {K : E}{E : F} isomorphisms we have already considered.
Therefore, {K : F} = {K : E}{E : F}.
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22. Show that an algebraic extension E is a splitting field over F if and only
if every automorphism σ of F that leaves F fixed restricts to an automor-
phism of E — that is, for all x ∈ E, σ(x) ∈ E.

Let E be the splitting field of {fi|i ∈ I} over F , and let σ be an auto-
morphism of F that leaves F fixed. Consider α ∈ E. α is a polynomial
in the zeros of the fi, so it must be in the splitting field of some finite
subset {fi1 , . . . , fin}. Let K be the splitting field of this subset. We will
show that σ(α) ∈ K. We know that α is a polynomial in the zeros of
{fi1 , . . . , fin}, and since σ is an automorphism, σ(α) is a polynomial in
the images of these zeros under σ. The images of these zeros are other
zeros of the fi, since they must be conjugates. Therefore, they are all in
K, so σ(α) ∈ K.

23. Show that if E is a splitting field of finite degree over F , then |G(E/F )| =
{E : F}.

We need to show that any isomorphism σ : E
E //

′
, where E′ is a subfield

of F is an automorphism of E. However, we know that σ can be extended
to an automorphism of F , and this restricts to an automorphism of E.
This automorphism of E must be σ.

24. Let f ∈ F [x] be irreducible. Show that all zeros of f have the same multi-
plicity.

Let α and β be zeros of f . Since f is irreducible, we have Irr(α, F ) =
f = Irr(β, F ), so α and β are conjugate over F . Therefore, we have the
conjugation isomorphism ψα,β : F (α) // F (β). Now we know that in
F (α), f(x) factors as (x− α)ng(x), where n is the multiplicity of α. The
conjugation isomorphism then sends this to (x − β)nψα,β(g(x)), so the
multiplicity of β is at least n. By using the isomorphism ψβ,α, we get that
the multiplicity of α is at least the multiplicity of β, so α and β have the
same multiplicity.

25. Show that if E is a finite extension of F , and K is a finite extension of
E, then K is separable over F if and only if K is separable over E and E
is separable over F .

We know that [K : F ] = [K : E][E : F ] and {K : F} = {K : E}{E : F}, so
ifK is separable over E and E is separable over F , then K is separable over
F . Conversely, if K is separable over F , then we have {K : E}{E : F} =
[K : E][E : F ], and since we have the inequalities {K : E} 6 [K : E] and
{E : F} 6 [E : F ], the only way to get {K : E}{E : F} = [K : E][E : F ]
is if {K : E} = [K : E] and {E : F} = [E : F ].

26. Show that a field of characteristic zero is perfect. [You may assume that
if gn ∈ F [x], then g ∈ F [x] whenever F has characteristic zero.]

Let F be a field of characteristic zero. We want to show that an irreducible
polynomial in F [x] cannot have a repeated zero. Let f be an irreducible
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polynomial in F [x]. Without loss of generality, we can assume f is monic.
Let the zeros of f in F be {α1, . . . , αm}. We know that all zeros have
the same multiplicity, because they are all conjugate over F . Let this
multiplicity be n. We have that f(x) = Πm

i=1(x − αi)n, so if we define
g ∈ F [x] by g(x) = Πm

i=1(x−αi), then we have f = gn ∈ F [x], so we have
g ∈ F [x]. Since F is irreducible, this gives g = f , so all zeros of f have
multiplicity 1. Therefore any finite extension of F is separable, so F is
perfect.

27. Show that any finite field is perfect.

Let F be a finite field with q elements, and let E be an extension of degree
n over F . We know that all elements of E are zeros of xq

n − x, so for
any α ∈ E, we have Irr(α, F ) divides xq

n − x. Since xq
n − x has qn zeros,

they must all have multiplicity one, so all zeros of Irr(α, F ) must have
multiplicity one, i.e. α is separable over F . Therefore, E is separable over
F .

28. Show that if E is a finite separable extension of an infinite field F , then
E = F (α) for some α in E.

It is sufficient to prove the case when E = F (β, γ) for some β and γ, since
the general case then follows by induction. In this case, let [F (β), F ] = m
and [F (β, γ) : F (β)] = n. We will choose α = β+aγ for some a ∈ F . The
conjugates of this α over F are β′ + aγ′ where β′ is a conjugate of β over
F and γ′ is a zero of ψβ,β′(Irr(γ, F (β))) over F (β′). If these conjugates
are all different, then we see that the irreducible polynomial of α over
F has degree mn, so that F (α) = F (β, γ). Therefore, we just need to
choose a to make them different. That is, we can just choose a so that

β′ + aγ′ 6= β′′ + aγ′′, i.e. a 6= β′−β′′
γ′−γ′′ for β′ and β′′ conjugates of β and γ′

and γ′′ conjugates of γ. Since β and γ have only finitely many conjugates
over F , we have only ruled out a finite number of possibilities for a, so
since F is infinite, we know that there is some suitable possibility for a.

29. Show that for any subgroup H of G(K/F ), where K is a finite normal
extension of F , we have λ(KH) = H.

It is obvious that H 6 λ(KH) from the definitions, so we just need to
prove the reverse inclusion. We can prove this by considering the order
of the relevant subgroups. We will show that [K : KH ] 6 |H|, then we
can deduce that |λ(KH)| = |H|, and so the two subgroups are equal. We
know that K is a finite normal extension of KH , so K = KH(α) for some
α ∈ K. Now consider the polynomial f = Πσ∈H(x−σ(α)). It is clear that
this polynomial is left fixed by H, so it is in KH [x]. We therefore have
that Irr(α,KH) has degree at most |H|, but this is the degree [K : KH ].

30. Show that for any field F 6 E 6 K, where K is a finite normal extension
of F , we have Kλ(E) = E.
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It is obvious that E 6 Kλ(E), by the definitions. We therefore just need
to show the reverse inclusion. We show that if α 6∈ E, then α is not fixed
by all automorphisms of K that fix E — that is, we need to construct an
automorphism of K that fixes E but not α. Since α 6∈ E, we have that
Irr(α,E) is a polynomial of degree more than 1. Since K is a separable
extension of E, this means that Irr(α,E) has more than one zero, so α
has some conjugate α′ over E. We now have the conjugation ismorphism
ψα,α′ : E(α) //E(α′). Since K is a splitting field, we can extend this
to an automorphism σ of K that leaves E fixed, but sends α to α′. We
have that σ ∈ λ(E), but α 6∈ Kσ, so we have shown α 6∈ Kλ(E) as required.

31. Show that for any field F 6 E 6 K, where K is a finite normal extension
of F , E is a normal extension of F if and only if λ(E) is a normal subgroup
of G(K/F ).

Since K is separable over F , we know E must be, so E is a normal exten-
sion if and only if it is a splitting field over F , which happens if and only if
any automorphism of K which leaves F fixed restricts to an automorphism
of E.

Let σ ∈ G(K/F ) and suppose α ∈ E is such that σ(α) = α′ 6∈ E. Since
α′ 6∈ E, we can find some β 6= α′ conjugate to α′ over E. We can then
find a conjugation isomorphism τ ∈ G(K/E) which sends α′ to β. Now
we have that σ−1τσ(α) = σ−1(β) 6= α, so that σ−1τσ 6∈ G(K/E), mean-
ing G(K/E) is not normal in G(K/F ). Conversely, if E is a normal
extension of F , then any automorphism σ in G(K/F ) sends elements of
E to elements of E, so for any τ ∈ G(K/E) and any α ∈ E, we have
στσ−1(α) = α, so στσ−1 ∈ G(K/E), and G(K/E) is a normal subgroup
of G(K/F ).

32. Show that a symmetric function in y1, . . . , yn over F is a rational function
of the elementary symmetric functions.

Let the elementary symmetric functions be s1, . . . , sn. Let S be the sub-
field of symmetric functions in F (y1, . . . , yn). We have a tower of exten-
sions

F (y1, . . . , yn)

S

F (s1, . . . , sn)

We know that F (y1, . . . , yn) is a splitting field of f(x) = xn − s1xn−1 +
· · · + (−1)nsn over F (s1, . . . , sn), so it is a normal extension. Since f
has degree n, we have [F (y1, . . . , yn) : F (s1, . . . , sn)] 6 n!. On the other
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hand, by definition S = F (y1, . . . , yn)Sn , and we can see that the permuta-
tions of {y1, . . . , yn} all induce different automorphisms of F (y1, . . . , yn),
so that [F (y1, . . . , yn) : S] > n!. Thus, we have n! 6 [F (y1, . . . , yn) :
S] 6 [F (y1, . . . , yn) : F (s1, . . . , sn)] 6 n!. Thus all the inequalities are
equalities, and S = F (s1, . . . , sn) as required.

33. Show that the Galois group of the nth cyclotomic extension of Q is iso-
morphic to the group of integers relatively prime to n under multiplication
modulo n.

Let ζ be a primitive nth root of unity. The primitive nth roots of unity
are ζm where m is coprime to n. An automorphism σ in G(Q(ζ)/Q) is
entirely determined by σ(ζ), which must be one of these primitive roots of
unity. Let σi denote the automorphism with σi(ζ) = ζi. Then σi(σj(ζ)) =
σi(ζ

j) = (σi(ζ))j = (ζi)j = ζij , so we get σiσj = σij .

34. Show that a regular n-gon is constructible if and only if all odd prime
divisors of n are Fermat primes, and n is not divisible by the square of
any odd prime.

An angle of θn = 360◦

n is constructible if and only if its cosine is con-

structible. Let ζ = cos θn + i sin θn. Now since sin θn =
√

1− cos2 θn, we

have that [Q(ζ, cos θn) : Q(θn)] 6 2, and cos θn = ζ+ζn−1

2 ∈ Q(ζ), so that
[Q(cos θn) : Q] is a power of 2 if and only if [Q(ζ) : Q] is. However, we
know that [Q(ζ) : Q] = φ(n), so the regular n-gon is constructible if and
only if φ(n) is a power of 2. If we have n = pm1

1 pm2
2 · · · p

mk

k , then we have

φ(n) = (p1− 1)(p2− 1) · · · (pk − 1)pm1−1
1 pm2−1

2 · · · pmk−1
k . For this to be a

power of 2, we need all the pi − 1 and all the pmi−1
i to be powers of 2. If

pi is an odd prime, this happens only if pi is a Fermat prime and mi = 1.

35. Let F be a field of characteristic zero. Show that if K is the splitting field
of xn − a over F , then G(K/F ) is solvable.

Let E be the nth cyclotomic extension of F . Then E is a normal extension
of F , and we know that G(E/F ) is isomorphic to the group of integers
coprime to n under multiplication modulo n, so it is abelian. We also have
that {e} 6 G(K/E) 6 G(K/F ) is a subnormal series for G(K/F ), and
the last factor group is isomorphic to G(K/F ), so we just need to show
that G(K/E) is abelian. Let β be a zero of xn − a. Let ζ be a primitive
nth root of unity. The zeros of xn − a are β, ζβ, . . . , ζn−1β. This means
that K = E(β), so an automorphism σ ∈ G(K/E) is entirely determined
by σ(β), and since it must preserve ζ, it must induce a cyclic permutation
on β, ζβ, . . . , ζn−1β, so these cyclic permutations commute, so G(K/E) is
abelian. Therefore, G(K/F ) is solvable.

36. Show that if E is a normal extension of F and K is an extension of F by
radicals, with F 6 E 6 K, then G(E/F ) is solvable.

Let K = F (α1, . . . , αk), where αni
i ∈ F (α1, . . . , αi−1), for each i. We

proceed by induction to extend K to a normal extension of F by radicals.
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We let L0 = F , and then let Li be the splitting field of Irr(αi, F ) over
Li−1. Since we know that αi is a zero of xni − αni

i , it is also a zero of
g(x) = Πσ∈G(Li−1/F )(x

ni−σ(αni
i )), which is a polynomial in F [x]. We see

that in Li−1, g(x) is a product of polynomials of the form xni − b, so each
Li is a radical extension of Li−1, and therefore G(L/F ) is solvable. Now
we have that G(E/F ) ∼= G(L/F )/G(L/E) is a factor group of a solvable
group and therefore solvable.

37. Show that any transitive subgroup of S5 which contains a transposition is
the whole of S5.

Let H be a transitive subgroup of S5 which contains a transposition (ij).
We will show that H contains all transpositions, and is therefore, the
whole of S5. We know that for any σ ∈ H, σ(ij)σ−1 = (σ(i)σ(j)), so
since H is transitive, it contains at least one transposition (ij) for any i.
Since 5 is odd, it must contain two transpositions (ij) and (ik) for some i.
Now it must also contain (ij)(ik)(ij) = (jk). Since H is transitive, there
must be some σ sending i to an element not in {i, j, k}. On the other
hand, we must have σ(j) ∈ {i, j, k} or σ(k) ∈ {i, j, k}. This means we
have a transposition (xl) where x ∈ {i, j, k} and l 6∈ {i, j, k}. Using this
and the existing transpositions, we see that any permutation on {i, j, k, l}
is possible. Finally, there is some σ sending i to the final element not in
{i, j, k, l}. Conjugation by this σ gives a transposition with this element
and another element. Composition with elements already obtained gives
the whole of S5.

38. Show that the quintic polynomial f(x) = x5 − 8x + 6 is not solvable by
radicals over Q.

We not that f is irreducible by Eisenstein’s criterion with p = 2. Let it
have 5 zeros α, β, γ, δ and ε. We know that α + β + γ + δ + ε = 0,
and αβ + αγ + αδ + αε + βγ + βδ + βε + γδ + γε + δε = 0. This gives
α2 + β2 + γ2 + δ2 + ε2 = 0, so the zeros cannot all be real. On the
other hand, we have f(−2) = −10, f(0) = 6 and f(1) = −1, so by the
intermediate value theorem, there are at least two real zeros. Non-real
zeros occur in conjugate pairs, so there are an even number of them,
which must be exactly two. Let K be the splitting field of f over Q. We
know that G(K/Q) is a subgroup of S5. It is transitive, because we have
the conjugation isomorphisms. Complex conjugation is in this group and
induces a transposition on the two non-real zeros of f , G(K/Q) contains a
transposition and is transitive, so it is the whole of S5. S5 is not solvable,
so f is not solvable by radicals over Q.

39. Let E = F (α1, . . . , αn) be an algebraic extension of F . Show that any
isomorphism σ from E to a subfield of F , that leaves F fixed is uniquely
determined by the values σ(α1), . . . , σ(αn).

Let σ1 and σ2 be two isomorphisms from E to a subfield of F , that leave
F fixed, such that for each i, σ1(αi) = σ2(αi). We need to show that

10



σ1 = σ2. Let S = {x ∈ F (α1, . . . , αn)|σ1(x) = σ2(x)}. We need to show
that S = F (α1, . . . , αn). We know that S contains F, α1, . . . , αn, so we just
need to show that S is a subfield. Since σ1 and σ2 are homomorphisms,
S must be closed under addition and multiplication. Furthermore, since
−1 ∈ F ⊆ S, S is closed under additive inverse. We need to show that S is
closed under multiplicative inverses. Let σ1(x) = σ2(x). We need to show
that σ1(x−1) = σ2(x−1). However, we know that σ1(x)σ1(x−1) = σ1(1) =
1 = σ2(1) = σ2(x)σ2(x−1) = σ1(x)σ2(x−1). Therefore, multiplying by
(σ1(x))−1 (which exists because σ1 is an isomorphism, so its kernel is
trivial, so σ1(x) 6= 0) we get that σ1(x−1) = σ2(x−1). Therefore S is a
subfield of F (α1, . . . , αn) containing F and {α1, . . . , αn}, so it must be the
whole of F (α1, . . . , αn).

New questions

40. Show that the algebraic closures of Q(π) and Q(e) are isomorphic.

Since π and e are both transcendental over Q, there is an isomorphism
σ : Q(π) // Q(e). This extends to an isomorphism σ̂ from Q(π) to a

subfield of Q(e). Similarly σ̂−1 extends to an isomorphism from Q(e) to
a subfield of Q(π). However, σ̂−1 is already onto Q(π), this extension
must be σ̂−1 itself. Therefore, σ̂ must be onto Q(e), so Q(π) and Q(e) are
isomorphic.

41. Show that if [E : F ] = 2, then E is a splitting field over F .

Let α ∈ E \ F . We have that E = F (α), and deg(α, F ) = 2. Let
f = Irr(α, F ). Since f is a quadratic, when we divide by (x − α), we get
a linear factor, which must have a zero in F (α), so f splits in F (α), and
F (α) is the splitting field of F .

42. Let E = F (α) be a splitting field over F , and [E : F ] = 3. Let the
conjugates of α over F be β and γ. Suppose that σ ∈ G(E/F ) is such that
σ(α) = β. What is σ(β)?

Since α has two conjugates over F , E is a separable extension of F . Since
[E : F ] = 3, we have that |G(E/F )| = 3. The only group of order 3 is the
cyclic group. This must act by cyclic permutation on the conjugates of α,
so if σ(α) = β, we must have σ(β) = γ.

43. Show that if α and β are both separable over F , then so is α+ β.

Since Irr(β, F (α)) divides Irr(β, F ), we get that β is separable over F (α).
Therefore, we have that F (α, β) is separable over F . Since F (α+ β) is a
subfield of F (α, β), it must also be separable over F , which means that
α+ β is separable over F .

44. Is every algebraically closed field perfect? Give a proof or a counterexam-
ple.
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Every algebraically closed field is perfect, since the only finite extension
of an algebraically closed field is the trivial extension, which is clearly
separable.

45. Let F 6 E 6 K, where K is a normal extension of F . If G(K/F ) is
abelian, show that G(K/E) and G(E/F ) are both abelian.

We have that G(K/E) is a subgroup of G(K/F ), which is abelian, so
G(K/E) is a subgroup of an abelian group, and therefore abelian. Now
any subgroup of an abelian group is normal, so E is a normal extension
of F , and we have that G(E/F ) ≡ G(K/F )/G(E/F ), which is a factor
group of an abelian group, and therefore abelian.

46. Let f = a0 + a1x + · · · + anx
n be an irreducible polynomial in F [x]. Let

α be a zero of F . Let K be the splitting field of f over F . Recall that the
norm of α over F is given by

NK/F (α) = Πσ∈G(K/F )σ(α)

Suppose that [K : F ] = n. Describe NK/F (α) in terms of the coefficients
of f .

Since [K : F ] = n, we know that |G(K/F )| 6 n. On the other hand,
G(K/F ) acts transitively on the conjugates of α, which are the n zeros of
f , so we know that for any zero α′ of f , there is exactly one σ ∈ G(K/F )
with σ(α) = α′. Therefore NK/F (α) is the product of all the conjugates
of α, which is (−1)na0.

47. Let f(x) = x3 + ax2 + bx+ c be an irreducible polynomial in F [x], where
F is a field of characteristic 3. Show that if f is not separable over F ,
then a = b = 0.

If f is not separable, then since all zeros have the same multiplicity, this
must divide 3, so all zeros have multiplicity 3. This means that f(x) = (x−
α)3, where α is the unique zero of f . This gives f(x) = x3−3α+3α2−α3,
which since F has characteristic 3, is equal to x3 − α3, so a = b = 0.

48. Let K be a finite normal extension of F . Let α ∈ K. Show that f(x) =
Πσ∈G(K/F )(x− σ(α)) is a power of Irr(α, F ).

We know that the zeros of Irr(α, F ) are the conjugates of α, and they
each have multiplicity one. On the other hand, in f(x), since we have
conjugation isomorphisms, we know that all conjugates of α are zeros
of f . Furthermore, we know that {σ ∈ G(K/F )|σ(α) = α′} = {σ ∈
G(K/F )|τσ(α) = τ(α′)}, so the number of factors for each conjugate of α
is the same. Therefore, f is a power of Irr(α, F ).

49. Let m and n be coprime. Show that the mnth cyclotomic extension of Q
is the splitting field of {xm − 1, xn − 1} over Q.

Let ζ be a primitive mnth root of unity. Then the mnth cyclotomic
extension of Q is Q(ζ). Meanwhile, ζm is a zero of xn − 1, and ζn is a
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zero if xm−1, so the splitting field of {xm−1, xn−1} contains Q(ζm, ζn).
However, we can find integers a and b so that am + bn = 1. This means
ζ = (ζm)a(ζn)b ∈ Q(ζm, ζn). It is obvious that xm− 1 and xn− 1 split in
Q(ζ), so we have shown both inclusions, as required.

50. Show that if K is a finite extension of F , and F is the fixed field of
G(K/F ), then K is a splitting field over F .

Let α ∈ K. We need to show that K contains all conjugates of α over F .
Let the conjugates of α over F that are in K be α = α1, α2, . . . , αn. Since
any σ ∈ G(K/F ) permutes these, any symmetric function of these is left
fixed by σ. Therefore, the elementary symmetric functions of α1, . . . , αn
are in KG(K/F ), so the polynomial Πn

i=1(x − αi) is in KG(K/F )[x] = F .
Therefore, this is the irreducible polynomial for α over K. Therefore,
α1, . . . , αn are all the conjugates of α over F , so K is a splitting field over
F .

51. Let f be an irreducible polynomial over F . Let α be a zero of f . Show
that if α lies in a radical extension E of F , then all other zeros of f also
lie in radical extensions of F .

Let R be a radical extension of F containing α, and let α′ be another
zeros of f . The other zeros are conjugate to α over F , so we have the

conjugation isomorphism ψα,α′ : F (α)
F // (α′). This extends to an iso-

morphism σ from R to a subfield R′ of F . This R′ clearly contains F (α′),
so we just need to show that it is a radical extension of F . Suppose
R = F (β1, . . . , βk) where βi

ni ∈ F (β1, . . . , βi−1). Now since σ is an iso-
morphism, we have that σ(βi)

ni = σ(βi
ni) ∈ F (σ(β1), . . . , σ(βi−1)), so

that R′ = F (σ(β1), . . . , σ(βk)) is an extension of F by radicals.

52. Let R be an extension of F by radicals, and let F 6 E 6 R be an inter-
mediate field. Must E be an extension of F by radicals? Give a proof or
a counterexample.

E does not need to be an extension of F by radicals. For example, if ζ is
a primitive 9th root of unity, then F (ζ+ ζ−1) is an intermediate field, but
is not an extension of Q by radicals.

Bonus Questions

53. If G is a group of automorphisms of E, and is isomorphic to S3, must E
be a splitting field over EG?

It must (in fact this is true for any group G of automorphisms of E.
Let α ∈ E, we need to show that all conjugates of α over EG are in E.
However, we know that f(x) = Πσ∈G(x−σ(α)) is left fixed by all elements
of G, so f ∈ EG[x], and α is a zero of f . Therefore Irr(α,EG) divides f ,
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so all conjugates of α over F are zeros of f , which are all in E. Therefore,
all conjugates of α are in E, so E is a splitting field over EG.
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