
MATH 3030, Abstract Algebra
FALL 2012
Toby Kenney

Sample Midyear Examination

This sample exam is deliberately longer than the actually midyear. It also
includes only questions from the topics covered after the midterm exam, al-
though the midyear exam will include some questions on topics covered before
then.

Basic Questions

1. Which of the following are rings: Justify your answers. [10 mins]

(a) The collection of integers with the usual addition and multiplication
given by a ∗ b = ab+ a+ b.

This is not a ring because ∗ does not distribute over addition. For example
2 ∗ (3 + 1) = 8 + 2 + 4 = 14, but 2 ∗ 3 + 2 ∗ 1 = 11 + 5 = 16.

(b) The integers with the usual addition, and multiplication given by a ∗ b
is the least common multiple of a and b.

This is not a ring because ∗ does not distribute over +. For example
2 ∗ (3 + 1) = 4, but 2 ∗ 3 + 2 ∗ 1 = 6 + 2 = 8.

(c) The set of integers with the usual addition, and multiplication given
by a ∗ b = 3ab.

This is a ring. We need to check that multiplication is associative: (a ∗
b) ∗ c = (3ab) ∗ c = 9abc = a ∗ (b ∗ c). We need to check that multiplication
distributes over addition. a∗ (b+ c) = 3a(b+ c) = 3ab+ 3ac = a∗ b+a∗ c,
and since ∗ is commutative, the other distributivity follows.

(d) The collection of subsets of a set X with 5 elements, with addition
given by symmetric difference and multiplication given by intersection.
[The symmetric difference of two sets A and B is the set of elements that
occur in exactly one of them.]

Symmetric difference is associative, since both (A4B)4C and A4(B4C)
give the set of elements that are in exactly one or three of A, B or C.

2. What are the units in the following rings: [15 mins]

(a) Z22.

The units are the numbers coprime to 22. That is {1, 3, 5, 7, 9, 13, 15, 17, 19, 21}.

(b) Numbers of the form a+b
√
2i

5 where a and b are integers.

Suppose the number a+b
√
2i

5 is a unit in this ring. Then there is another

number c+d
√
2i

5 in the ring, such that a+b
√
2i

5
c+d
√
2i

5 = 1, or eqivalently
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(a + b
√

2i)(c + d
√

2i) = ac − 2bd + (ad + bc)
√

2i = 25. This can only
happen if ad+ bc = 0 and ac− 2bd = 25. Let x = a

c = − b
d , then we have

a2x+2b2x = 25 for some x such that ax and bx are both integers. We first
consider cases where a and b are coprime. In this case, the fact that ax
and bx are both integers means that x is an integer. Therefore, a2 + 2b2

must be a factor of 25. We consider the possibilities: a2+2b2 = 1 has only
a = ±1, b = 0 as a solution. a2 + 2b2 = 5 has no solutions. a2 + 2b2 = 25
has only a = ±5, b = 0 as a solution. Therefore, the only units are −15 , 1

5 ,

3. Show that the set of numbers of the form a+b
√

5 where a and b are rational
numbers is a field. [10 mins]

Since these are all real numbers, we just need to show that this set is
closed under addition and multiplication, contains the identity, and is
closed under inverses. It is clear that this set is closed under addition, and
for multiplication, we see (a + b

√
5)(c + d

√
5) = ac + 5bd + (ad + bc)

√
5,

so the set is closed under multiplication.

Finally, the inverse of a+ b
√

5 is a−b
√
5

a2+5b2 , which is a
a2+5b2 −

b
a2+5b2 .

4. Which of the following rings are integral domains: [7 mins]

(a) Z30.

This is not an integral domain, because for example, 3 · 10 = 0.

(b) The ring of 2× 2 upper triangular matrices over Z.

This is not an integral domain, because it is not commutative, and also(
1 0
0 0

)(
0 0
0 1

)
=

(
0 0
0 0

)
(c) The collection of rational numbers where the denominator is a power
of 2.

This is a subring of the rational numbers, so it is commutative and has no
zero divisors, so we only need to check that it is unital, but this is obvious,
since 1 is a rational number with denominator 1, which is a power of 2.

5. Factorise x4 + x3 + 4x2 + 24:

(a) over Z5. [5 mins]

We check for linear factors by looking for zeros:

x x4 + x3 + 4x2 + 24
0 4
1 0
2 4
3 3
4 3

so x − 1 is a factor. By long division, we get x4 + x3 + 4x2 + 24 =
(x − 1)(x3 + 2x2 + x + 1). We know that 0, 2, 3, and 4 cannot be zeros
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of x3 + 2x2 + x+ 1, since then they would be zeros of x4 + x3 + 4x2 + 24,
which we have seen they are not. However, we see that 1 is a zero of
x3 + 2x2 +x+ 1, so we factor it as x3 + 2x2 +x+ 1 = (x− 1)(x2 + 3x− 1).
1 is not a zero of x2 + 3x − 1, so it has no zeros, so it is irreducible.
Therefore, we have x4 + x3 + 4x2 + 24 = (x− 1)2(x2 + 3x− 1) in Z5.

(b) over Z. [6 mins]

We know that the factors must be congruent to products of (x− 1)2 and
(x2 + 3x− 1) modulo 5. Furthermore, the constant terms must be factors
of 24, so we can try a few possibilities — we first check for zeros (which
must be factors of 24).

x x4 + x3 + 4x2 + 24
-24 320280
-12 19608
-8 4864
-6 1248
-4 280
-2 48
-1 28
1 30
2 64
4 408
6 1680
8 4888
12 23064
24 347928

[In fact, it should be obvious that there are no zeros, since x4 + x3 must
be non-negative for any integer, and 4x2 + 24 must be positive.]

Therefore the only possible factorisation is as two quadratic factors, which
must be congruent to (x2 − 2x+ 1) and (x2 + 3x− 1) modulo 5. We try
to divide by (x2 + 3x− 1), and we get x2 − 2x+ 11, with a remainder of
−35x+35. Next, we try to divide by (x2 +3x+4), and we get x2−2x+6,
with a remainder of 10x. We try to divide by (x2 − 2x − 1), and we
get x2 + 3x + 11, with a remainder of −25x + 35. We try to divide by
(x2 − 2x+ 4), and we get x2 + 3x+ 6, with no remainder.

We therefore conclude x4 + x3 + 4x2 + 24 = (x2 − 2x+ 4)(x2 + 3x+ 6).

6. Show that f(x) = x4 − x3 + 3x2 − 22x + 40 is irreducible over Z. [Hint:
consider x = y + 1 and use Eisenstein’s criterion.] [5 mins]

If we let x = y+1, the polynomial becomes (y+1)4−(y+1)3+3(y+1)2−
22(y + 1) + 40 = y4 + 3y3 + 6y2 − 15y + 21. Using Eisenstein’s criterion
with p = 3, we see that this is irreducible.

7. Find all solutions to the equation x2 − 3x+ 8 = 0 in Z12. [5 mins]
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By inspection, we see that x = −1 is a solution. This allows us to factorise
x2 − 3x + 8 = (x + 1)(x − 4). Now in order for this product to be zero,
there are several possibilities: We can have that one factor is zero, or we
could have one factor divisible by 2 and the other by 6 — however this is
impossible since they differ by an odd number, so cannot both be even —
or one factor could be divisible by 4, and the other by 3. This gives the
following possibilities:

x (x+ 1) (x− 4)
11 0 7
8 9 4
7 8 3
4 5 0

Therefore, the solutions are 4, 7, 8 and 11.

8. Find all prime numbers p such that x−7 is a factor of x4−4x3+5x2+4x−2
in Zp[x]. [5 mins]

x−7 is a factor of x4−4x3+5x2+4x−2 in Zp[x] if and only if 7 is a zero of
x4−4x3+5x2+4x−2 in Zp. We have that 74−4×73+5×72+4×7−2 =
1272, so x− 7 is a factor of x4 − 4x3 + 5x2 + 4x− 2 in Zp[x] if and only if
p divides 1272 = 8× 3× 53, so the prime numbers for which this happens
are 2, 3, and 53.

9. Find a generator for the multiplicative group of non-zero elements of Z29.
[10 mins]

We know that the order of any element in this group divides 28, so is one
of 1, 2, 4, 7, and 14. If we consider 2, we know that 24 = 16, so the order of
2 must be larger than 4. 27 = 128 ≡ 12 (mod 29), and 214 ≡ 12×12 ≡ −1
(mod 29). Therefore 2 is a generator in this group.

Suppose we started by trying 7, we would find that 77 ≡ 1 (mod 29), so 7
is not a generator. We could then try a different number (not a power of
7). Suppose we try 17. We would then discover that 174 ≡ 1 (mod 29).
We could then deduce that 7×17 ≡ 3 (mod 29) must have order the least
common multiple of 7 and 4, which is 28, so this is a generator of the
group.

10. Show that f(x) = x3 − 2x2 + 2 is irreducible in Z5. [5 mins]

If f is not irreducible, then it must have a factor of the form x − a for
some a ∈ Z5. But this would mean that a is a zero of f , so we just need
to check whether f has any zeros in Z5.

x f(x)
0 2
1 1
2 2
3 1
4 4
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f has no zeros in Z5 so it is irreducible over Z5.

11. Find the remainder of 61022 when divided by 11. [2 mins]

By Fermat’s Little Theorem, 610 ≡ 1 (mod 11), so 61020 ≡ 1 (mod 11),
and therefore, 61022 ≡ 62 ≡ 3 (mod 11).

12. Find the remainder when 11123456 is divided by 21. [4 mins]

φ(21) = 2 × 6 = 12, so by Euler’s theorem, 1112 ≡ 1 (mod 21). Now
123456 is divisible by 3 (since the sum of its digits is), and divisible by 4
(since 56 is), so it is divisible by 12. Therefore, 11123456 ≡ 1 (mod 21).

13. Find the remainder when 55
55

55
55

is divided by 13. [6 mins]

Since 512 ≡ 1 (mod 13), we just need to calculate 55
55

55
5

modulo 12.

Now φ(12) = 4, so we need to calculate 55
55

55

modulo 4. Now since 5 ≡ 1

(mod 4), we know that 55
55

55

≡ 1 (mod 4), so 55
55

55
5

≡ 51 ≡ 5 (mod 12),

and therefore 55
55

55
55

≡ 55 ≡ 5 (mod 13).

14. Solve: [8 mins]

(a) 8x ≡ 6(mod19)

This has a unique solution. In this case, the easiest way is to see that
by inspection 8 × 12 ≡ 1 (mod 19), so 8 × 12 × 6 ≡ 6 (mod 19), so the
solution is x = 12× 6 ≡ 15 (mod 19).

Alternatively, we know that 818 ∼= 1 (mod 19), so the inverse of 8 in Z19

is 817. We can then compute 82 ≡ 7, 84 ≡ 11, 88 ≡ 7 [At this point, we
can see that 86 ≡ 1, (which we already know since 86 = 218 so that the
inverse of 8 is 85 ≡ 11× 8 ≡ 12)] and 816 ≡ 11, so that 817 ≡ 12.

(b) 2x ≡ 6(mod18)

All the numbers are divisible by 2, so this has 2 solutions in Z18. The
solutions can be obtained as the solutions to x ≡ 3 (mod 9), so they are
x ≡ 3 and x ≡ 12.

15. Describe the field of quotients of the integral domain {a+ b
√

2i|a, b ∈ Z}.
[10 mins]

We know that by choosing the denominator to be an integer (i.e. b = 0),
we can get all numbers of the form x + y

√
2i where x and y are rational

numbers. However, we can show that the set of these numbers is a field,
and so must be the field of quotients of this integral domain. To show it is
a field, it is obviously closed under addition and multiplication, so we just
need to show that it is closed under inverses. However, (a + b

√
2i)−1 =

a−b
√
2i

a2+2b2 , which is of the form x+ y
√

2i for rational x and y.
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Theoretical Questions

16. (a) Show that the intersection of two subrings of a ring is a ring. [5 mins]

(b) Show that the intersection of two subfields of a field is a subfield. [5
mins]

17. Show that the characteristic of an integral domain must be prime or 0. [5
mins]

18. Show that there is no field with exactly 6 elements. [10 mins]

19. Prove addition and multiplication are well-defined in the field of quotients
of an integral domain. [7 mins]

20. Prove that a finite integral domain is a field. [10 mins]

21. Let D be an integral domain, and let F be a field of quotients of D. Let L be
any field containing D. Prove that there is a homomorphism φ : F //L
such that φ(x) = x for all x ∈ L. [10 mins]

22. State and prove the factor theorem for the polynomial ring over a field. [7
mins]

23. (a) Show that a polynomial of degree n in F [x] for a field F can have at
most n zeros. [7 mins]

(b) Deduce that the multiplicative group of non-zero elements in a finite
field is cyclic. (Recall the classification theorem for finitely generated
abelian groups.) [7 mins]
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