MATH 3030, Abstract Algebra FALL 2012 Toby Kenney Homework Sheet 1 Due: Friday 28th September: 3:30 PM

Basic Questions

1. Which of the binary operations in the following table are (a) Commutative (b) Associative?

		\mathbf{a}			
-	a	a	b	с	с
(i)	b	a	b	с	с
()	c	c	c	c	c
	d	${}^{\mathrm{c}}_{\mathrm{c}}$	c	c	d
	u	C	C	C	u
		a	b	с	
(iii)	a	b	b	с	
(111)	b	b c a	c	a	
	\mathbf{c}	a	a	b	

2. Which of the following produce well-defined binary operations? Justify your answers.

(a) * on the complex numbers defined by a*b is the solution to $x^2+ax+b=0$.

(b) * on the non-negative integers given by a * b is the number of digits that a and b have in common (written in decimal).

(c) * on the set of circles in the plane where $c_1 * c_2$ is the smallest circle which is tangent to both c_1 and c_2 .

(d) * on the set of intervals [a, b] in the real numbers given by $[a, b] * [c, d] = \{xy | x \in [a, b], y \in [c, d]\}.$

- 3. Which pairs of the binary operations in Question 1 are isomorphic? Give an isomorphism if one exists and explain why one cannot exist if one does not exist.
- 4. Which of the following binary operations are groups? Justify your answers.

	a	b	с	d	е		a	b	\mathbf{c}	
	a	b	\mathbf{c}	d	е	a				
	b	d	a	e	с) b c	b	a	е	
b d c e	e	è	d	b	a	'с	c	d	a	
d						d				
e c	с		b	a	d	е	e	\mathbf{c}	d	1

a	-			d	e	f
a	a	b	с	d	е	f
b	b	a	е	f	\mathbf{c}	d
с	c	f	a	e	d	b
d	d	e	\mathbf{f}	a	b	\mathbf{c}
е	е	d	b	\mathbf{c}	f	a
f	f	\mathbf{c}	d	\mathbf{b}	\mathbf{a}	e
i		,				
a	a		с			
b	с	a	b			
c	b	с	a			
	c d f f a b	$\begin{array}{c} c & c \\ d & d \\ e & e \\ f & f \\ \end{array}$	$\begin{array}{ccc} c & f \\ d & d & e \\ e & e & d \\ f & f & c \\ \end{array}$	$\begin{array}{cccc} c & f & a \\ d & e & f \\ e & e & d & b \\ f & f & c & d \end{array}$ $\begin{array}{cccc} a & b & c \\ a & a & b & c \\ b & c & a & b \end{array}$	$\begin{array}{ccccccc} c & f & a & e \\ d & d & e & f & a \\ e & e & d & b & c \\ f & f & c & d & b \\ \hline & a & b & c \\ a & a & b & c \\ b & c & a & b \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

Theoretical Questions

- 5. Let * and . be two binary operations on a set S, with the same identity element 1. Suppose further that (a * b).(c * d) = (a.c) * (b.d) for any a, b, c and d in S. Prove that * and . are the same operation, and further that this operation is commutative and associative. [Hint: consider (a.1) * (1.b) and (1.b) * (a.1).]
- 6. Show that the isomorphism relation between sets with a binary operation is an equivalence relation.
- 7. Let G be a finite group with identity e, and let x be an element of G. Show that there is some number n such that $x^n = e$.
- 8. For a fixed element a of a group G, show that the map ϕ given by $\phi(x) = axa^{-1}$ is an isomorphism from G to itself.

Bonus Questions

- 9. How many associative binary operations are there on a 3-element set?
- 10. Let S be a set with an associative binary operation * such that for every element $x \in S$, there is a unique element x' such that x * x' * x = x. Prove that S is a group under *.