MATH 3030, Abstract Algebra
 FALL 2012
 Toby Kenney
 Homework Sheet 10
 Due: Friday 25th January: 3:30 PM

Basic Questions

1. Which of the following are ideals?
(i) The set of all polynomials whose constant term is 0 in $\mathbb{Q}[x]$.
(ii) The set of all polynomials $a_{0}+a_{1} x+a_{2} x^{2}+\cdots+a_{n} x^{n}$ in $\mathbb{Z}[x]$ where a_{1} is even.
(iii) The set of pairs of the form $(0, b) \in \mathbb{Z} \times \mathbb{Z}$.
2. Which of the ideals in Q. 1 are
(a) prime?
(b) maximal?
3. What are the maximal ideals of \mathbb{Z}_{24} ?
4. Describe all ring homomorphisms from \mathbb{Z} to \mathbb{Z}_{18}.
5. Let $R=\mathbb{Z}_{4} \times \mathbb{Z}_{2}$. Let I be the ideal of R generated by $(2,1)$. What is the $\operatorname{ring} R / I$?

Theoretical Questions

6. Let $\phi: R \longrightarrow S$ be a ring homomorphism.
(a) Show that for an ideal I in R, the image $\phi(I)$ is an ideal in the image $\phi(R)$. Give an example to show that it need not be an ideal in S.
(b) Show that for an ideal J in S, the inverse image $\phi^{-1}(J)=\{x \in$ $R \mid \phi(x) \in J\}$ is an ideal in R.
7. Show that the intersection of a set of ideals in a ring R is another ideal in R.
8. Show that the composite of two ring homomorphisms is a ring homomorphism.
9. For a field F, show that any non-trivial proper prime ideal of $F[x]$ is maximal.

Bonus Questions

10. For ideals I and J of a ring R, show that $I+J=\{x+y \mid x \in I, y \in J\}$ is also an ideal of R.
