MATH 3030, Abstract Algebra
 FALL 2012
 Toby Kenney
 Homework Sheet 11
 Due: Monday 4th February: 3:30 PM

Basic Questions

1. Calculate the dimension of $Q[\sqrt[5]{7}]$ as a vector space over Q.
2. Give a basis of $Q\left[\frac{1}{2}+\frac{\sqrt{3}}{2} i\right]$ over Q.
3. What is $\operatorname{Irr}(\sqrt{3+\sqrt[3]{3}}, \mathbb{Q})$?
4. The polynomial $f(x)=x^{2}+2 x+2$ is irreducible over \mathbb{Z}_{3}. Let α be a zero of f, and factorise f over $\mathbb{Z}_{3}(\alpha)$. [Hint: use long division.]
5. Let α be a zero of $f(x)=x^{3}+x+1$ over \mathbb{Z}_{2}. Compute the multiplication table of $\mathbb{Z}_{2}(\alpha)$. [Hint: $\mathbb{Z}_{2}(\alpha)$ has 8 elements: $0,1, \alpha, \alpha+1, \alpha^{2}, \alpha^{2}+1$, $\alpha^{2}+\alpha$, and $\alpha^{2}+\alpha+1$.]

Theoretical Questions

6. Let V be a vector space of dimension n over a field F.
(a) Show that if v_{1}, \ldots, v_{n} is a linearly independent set, then it is a basis.
(b) Show that if v_{1}, \ldots, v_{n} is a spanning set, then it is a basis.
7. If F is a finite field with q elements, and V is a vector space of dimension d over F, show that V has q^{d} elements.
8. Show that if E is a finite extension field of F, and if $[E: F]$ is prime, then E is a simple extension of F. [Hint: in fact $E=F(\alpha)$ for any α in $E \backslash F$.]
9. Let F be a field, let $F(\alpha)$ be algebraic over F, and let $[F(\alpha): F]$ be odd. Show that $F\left(\alpha^{2}\right)=F(\alpha)$.
