MATH 3030, Abstract Algebra
FALL 2012
Toby Kenney
Homework Sheet 12
Due: Monday 11th February: 3:30 PM

Basic Questions

1. Show that it is not possible to trisect an angle of $\cos ^{-1}(0.6)$. [An angle of $\cos ^{-1}(0.6)$ is constructable.]
2. Show that $x^{3}+2 x^{2}+4 x+3$ has distinct zeros in the algebraic closure of \mathbb{Z}_{5}.
3. How many primitive 15 th roots of unity are there in $\mathrm{GF}(16)$?
4. Find a basis for the field extension $\mathbb{Q}(\sqrt{2}, \sqrt[3]{3})$ over \mathbb{Q}.

Theoretical Questions

5. Let E be algebraically closed, and let F be a subfield of E. Show that the algebraic closure of F in E is also algebraically closed. [So for example, the field of algebraic numbers (that is, complex numbers that are algebraic over \mathbb{Q}) is algebraically closed.
6. Let F be a field. Let α be transcendental over F. Show that any element of $F(\alpha)$ is either in F or transcendental over F.
7. Is it possible to duplicate a cube if we are given a unit line segment and a line segment of length $\sqrt[3]{3}$?
8. Show that every irreducible polynomial in $\mathbb{Z}_{p}[x]$ divides $x^{p^{n}}-x$ for some n.
9. Show that a finite field of p^{n} elements has exactly one subfield of p^{m} elements for any m which divides n.

Bonus Questions

10. Let F_{q} be the finite field with q elements.
(a) Show that an irreducible polynomial of degree m in $F_{q}[X]$ divides $x^{q^{n}}-x$ if and only if m divides n.
(b) If $a_{n}(q)$ is the number of irreducible polynomials of degree n over F_{q}, show that

$$
\sum_{d \mid n} d a_{d}(q)=q^{n}
$$

(c) How many irreducible polynomials of degree 6 are there over \mathbb{Z}_{3}.

