MATH 3030, Abstract Algebra
FALL 2012
Toby Kenney
Homework Sheet 14
Due: Friday 15th March: 3:30 PM

Basic Questions

1. Which of the following pairs of numbers are conjugate over \mathbb{Q} ?
(a) $\sqrt{2}$ and $\sqrt{6}$.
(b) $1+\sqrt{2}$ and $1-\sqrt{2}$.
(c) $\sqrt[4]{2}$ and $\sqrt{2}$.
2. In $\mathbb{Q}(\sqrt{2}+\sqrt{3})$, compute $\psi_{\sqrt{2}+\sqrt{3}, \sqrt{2}-\sqrt{3}}(2+\sqrt{2}-\sqrt{6})$.

3. Let α be a zero of $x^{3}+x^{2}+x+3$ in GF(125).
(a) Compute the Frobenius automorphism $\sigma_{5}(\alpha)$. [Express $\sigma_{5}(\alpha)$ in the basis $\left\{1, \alpha, \alpha^{2}\right\}$.]
(b) Describe the fixed field of $\left\{\sigma_{5}\right\}$ in terms of this basis.
4. Let $\omega=\frac{-1+\sqrt{3} i}{2}$ (so that $\omega^{3}=1$.) Consider the isomorphism $\psi \sqrt[3]{2}, \omega \sqrt[3]{2}$ from $\mathbb{Q}(\sqrt[3]{2})$ to $\mathbb{Q}(\sqrt[3]{2} \omega)$. Compute all ways to extend this isomorphism to an isomorphism mapping $\mathbb{Q}(\sqrt[3]{2}, \omega \sqrt[3]{2})$ to a subfield of \bar{Q}.

Theoretical Questions

6. Let $F\left(\alpha_{1}, \ldots, \alpha_{n}\right)$ be an extension field of F. Show that any automorphism σ of $F\left(\alpha_{1}, \ldots, \alpha_{n}\right)$ leaving F fixed is completely determined by the values $\sigma\left(\alpha_{i}\right)$.
7. Let E be an extension field of F. Let S be a set of automorphisms of E fixing F. Let H be the subgroup of $G(E / F)$ generated by S. Show that $E_{S}=E_{H}$.
8. (a) Show that if F is an algebraically closed field, then any isomorphism σ of F to a subfield of F such that F is algebraic over $\sigma(F)$, is an automorphism of F. [Hint, since $\sigma(F)$ is isomorphic to F, it must be algebraically closed.]
(b) Let E be an algebraic extension of F. Show that any isomorphism of E onto a subfield of \bar{F} that fixes F can be extended to an automorphism of \bar{F}.
9. Let E be an algebraic extension of F. Show that there is an isomorphism of \bar{F} to \bar{E} fixing all elements of F.
10. Let E be a finite extension of F. Show that $\{E: F\} \leqslant[E: F]$. [You may assume the result for simple extensions.]

Bonus Questions

11. Show that if α and β are both transcendental over F, then there is an isomorphism of $F(\alpha)$ and $F(\beta)$ sending α to β.
12. Show that the only automorphism of \mathbb{R} is the identity. [Hint: show that any automorphism preserves positive numbers (since these are the squares of real numbers) and therefore preserves the order on real numbers.]
