MATH 3030, Abstract Algebra FALL 2012 Toby Kenney Homework Sheet 14 Due: Friday 15th March: 3:30 PM

Basic Questions

- 1. Which of the following pairs of numbers are conjugate over \mathbb{Q} ?
 - (a) $\sqrt{2}$ and $\sqrt{6}$.
 - (b) $1 + \sqrt{2}$ and $1 \sqrt{2}$.
 - (c) $\sqrt[4]{2}$ and $\sqrt{2}$.
- 2. In $\mathbb{Q}(\sqrt{2} + \sqrt{3})$, compute $\psi_{\sqrt{2} + \sqrt{3},\sqrt{2} \sqrt{3}}(2 + \sqrt{2} \sqrt{6})$.
- 3. In $\mathbb{Q}(\sqrt{2}+\sqrt{3})$, compute the fixed field of $\{\psi_{\sqrt{2}+\sqrt{3},-\sqrt{2}-\sqrt{3}}\}$.
- 4. Let α be a zero of $x^3 + x^2 + x + 3$ in GF(125).

(a) Compute the Frobenius automorphism $\sigma_5(\alpha)$. [Express $\sigma_5(\alpha)$ in the basis $\{1, \alpha, \alpha^2\}$.]

- (b) Describe the fixed field of $\{\sigma_5\}$ in terms of this basis.
- 5. Let $\omega = \frac{-1 + \sqrt{3}i}{2}$ (so that $\omega^3 = 1$.) Consider the isomorphism $\psi_{\sqrt[3]{2},\omega\sqrt[3]{2}}$ from $\mathbb{Q}(\sqrt[3]{2})$ to $\mathbb{Q}(\sqrt[3]{2}\omega)$. Compute all ways to extend this isomorphism to an isomorphism mapping $\mathbb{Q}(\sqrt[3]{2}, \omega\sqrt[3]{2})$ to a subfield of \overline{Q} .

Theoretical Questions

- 6. Let $F(\alpha_1, \ldots, \alpha_n)$ be an extension field of F. Show that any automorphism σ of $F(\alpha_1, \ldots, \alpha_n)$ leaving F fixed is completely determined by the values $\sigma(\alpha_i)$.
- 7. Let *E* be an extension field of *F*. Let *S* be a set of automorphisms of *E* fixing *F*. Let *H* be the subgroup of G(E/F) generated by *S*. Show that $E_S = E_H$.
- 8. (a) Show that if F is an algebraically closed field, then any isomorphism σ of F to a subfield of F such that F is algebraic over $\sigma(F)$, is an automorphism of F. [Hint, since $\sigma(F)$ is isomorphic to F, it must be algebraically closed.]

(b) Let E be an algebraic extension of F. Show that any isomorphism of E onto a subfield of \overline{F} that fixes F can be extended to an automorphism of \overline{F} .

- 9. Let E be an algebraic extension of F. Show that there is an isomorphism of \overline{F} to \overline{E} fixing all elements of F.
- 10. Let E be a finite extension of F. Show that $\{E:F\} \leq [E:F]$. [You may assume the result for simple extensions.]

Bonus Questions

- 11. Show that if α and β are both transcendental over F, then there is an isomorphism of $F(\alpha)$ and $F(\beta)$ sending α to β .
- 12. Show that the only automorphism of \mathbb{R} is the identity. [Hint: show that any automorphism preserves positive numbers (since these are the squares of real numbers) and therefore preserves the order on real numbers.]