MATH 3030, Abstract Algebra

Winter 2013
Toby Kenney
Homework Sheet 16
Due: Wednesday 27th March: 3:30 PM

Basic Questions

1. Let f be an irreducible quartic (degree 4) polynomial over a perfect field F. Let K be a splitting field for f over F. Let the zeros of f in K be α, β, γ and δ.
(a) What is the orbit of $\alpha \beta+\gamma \delta$ under $G(K / F)$?
(b) [bonus] If $f(x)=x^{4}+a x^{3}+b x^{2}+c x+d$, what is $\operatorname{Irr}(\alpha \beta+\gamma \delta, F)$?
2. Write $\frac{1}{a^{2}}+\frac{1}{b^{2}}+\frac{1}{c^{2}}$ as a rational function in the elementary symmetric functions $a+b+c, a b+a c+b c$ and $a b c$.
3. What is the order of $G(G F(64) / G F(4))$?
4. How many extension fields of \mathbb{Q} are contained in the field $\mathbb{Q}(\sqrt[4]{3}, i)$?

Theoretical Questions

5. Let E be a finite normal extension of F. Let $\alpha \in E$. Define the norm of α over F by:

$$
N_{E / F}(\alpha)=\Pi_{\sigma \in G(E / F)} \sigma(\alpha)
$$

and the trace of α over F by:

$$
\operatorname{Tr}_{E / F}(\alpha)=\sum_{\sigma \in G(E / F)} \sigma(\alpha)
$$

Show that $N_{E / F}(\alpha)$ and $\operatorname{Tr}_{E / F}(\alpha)$ are elements of F.
6. Let D and E be two extension fields of F. Let K be an extension field of F containing both D and E. The join $D \vee E$ of D and E is the smallest subfield of K that contains both D and E as subfields - see the following diagram:

Describe $G(K /(D \vee E))$ in terms of $G(K / D)$ and $G(K / E)$.
7. Let f be an irreducible monic polynomial over a field F, and let K be a splitting field for f over F. Let the zeros of f in K be $\alpha_{1}, \ldots, \alpha_{n}$. Let $\Delta(f)=\Pi_{i<j}\left(\alpha_{i}-\alpha_{j}\right)$. Show that $(\Delta(f))^{2} \in F$.

