MATH 3030, Abstract Algebra Winter 2013 Toby Kenney Homework Sheet 16 Due: Wednesday 27th March: 3:30 PM

Basic Questions

- 1. Let f be an irreducible quartic (degree 4) polynomial over a perfect field F. Let K be a splitting field for f over F. Let the zeros of f in K be α , β , γ and δ .
 - (a) What is the orbit of $\alpha\beta + \gamma\delta$ under G(K/F)?
 - (b) [bonus] If $f(x) = x^4 + ax^3 + bx^2 + cx + d$, what is $Irr(\alpha\beta + \gamma\delta, F)$?
- 2. Write $\frac{1}{a^2} + \frac{1}{b^2} + \frac{1}{c^2}$ as a rational function in the elementary symmetric functions a + b + c, ab + ac + bc and abc.
- 3. What is the order of G(GF(64)/GF(4))?
- 4. How many extension fields of \mathbb{Q} are contained in the field $\mathbb{Q}(\sqrt[4]{3}, i)$?

Theoretical Questions

5. Let E be a finite normal extension of F. Let $\alpha \in E$. Define the norm of α over F by:

$$N_{E/F}(\alpha) = \prod_{\sigma \in G(E/F)} \sigma(\alpha)$$

and the *trace* of α over F by:

$$\operatorname{Tr}_{E/F}(\alpha) = \sum_{\sigma \in G(E/F)} \sigma(\alpha)$$

Show that $N_{E/F}(\alpha)$ and $\operatorname{Tr}_{E/F}(\alpha)$ are elements of F.

6. Let D and E be two extension fields of F. Let K be an extension field of F containing both D and E. The join $D \vee E$ of D and E is the smallest subfield of K that contains both D and E as subfields — see the following diagram:

Describe $G(K/(D \vee E))$ in terms of G(K/D) and G(K/E).

7. Let f be an irreducible monic polynomial over a field F, and let K be a splitting field for f over F. Let the zeros of f in K be $\alpha_1, \ldots, \alpha_n$. Let $\Delta(f) = \prod_{i < j} (\alpha_i - \alpha_j)$. Show that $(\Delta(f))^2 \in F$.