MATH 3030, Abstract Algebra
FALL 2012
Toby Kenney
Homework Sheet 3
Due: Friday 12th October: 3:30 PM

Basic Questions

1. (a) Calculate the product $\left(\begin{array}{lllll}1 & 2 & 3 & 4 & 5 \\ 2 & 3 & 5 & 1 & 4\end{array}\right)\left(\begin{array}{lllll}1 & 2 & 3 & 4 & 5 \\ 3 & 2 & 5 & 4 & 1\end{array}\right)$.
(b) Calculate the inverse of $\left(\begin{array}{lllll}1 & 2 & 3 & 4 & 5 \\ 4 & 3 & 1 & 2 & 5\end{array}\right)$.
2. Write $\left(\begin{array}{ccccccccc}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 2 & 3 & 7 & 9 & 5 & 8 & 1 & 4 & 6\end{array}\right)$ as a product of disjoint cycles.
3. How many permutations $\sigma \in S_{6}$ satisfy $\sigma^{2}=e$?
4. Recall that the order of an element x is the smallest power $n \geqslant 1$ such that $x^{n}=e$.
(a) What is the order of $(125)(34)$?
(b) What is the order of $(1467)(35)$?
5. What is the largest order of an element of S_{9} ?

Theoretical Questions

6. A permutation group $H \leqslant S_{A}$ on a set A is transitive if for any two elements $a, b \in A$, there is a permutation $\sigma \in H$ such that $\sigma(a)=b$. Show that a transitive permutation group must have at least $|A|$ elements.
7. Let $B \subseteq A$. Show that the set of permutations of A that fix B, i.e. the set $\left\{\sigma \in S_{A} \mid(\forall b \in B)(\sigma(b) \in B)\right\}$ is a subgroup of S_{A}.
8. (a) Show that S_{n} is generated by the transpositions $(1,2),(2,3), \ldots,(n-$ $1, n)$.
(b) Show that S_{n} is generated by just the two elements $(1,2)$ and $(1,2,3, \ldots, n)$.
9. Show that any subgroup of S_{n} which is cyclic and transitive must have order n.
10. Show that the set of 3 -cycles generates the alternating group A_{n}.
11. Show that permutations σ and τ are conjugate in S_{n} [that is, there is a permutation θ such that $\tau=\theta \sigma \theta^{-1}$] if and only if they have the same cycle type (that is, they have the same number of cycles, and the corresponding cycles have the same size).

Bonus Questions

12. If G is a permutation group on a set X, and $x \in X$, the stabiliser of x is the set of elements of G which fix x. That is $\sigma_{G}(x)=\{g \in G \mid g(x)=x\}$. Show that $|G|=\left|O_{G}(x)\right| \mid \sigma_{G}\left(x \mid\right.$ where $O_{G}(x)$ is the orbit of x under G.
