MATH 3030, Abstract Algebra FALL 2012 Toby Kenney Homework Sheet 3 Due: Friday 12th October: 3:30 PM

Basic Questions

- 1. (a) Calculate the product $\begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 2 & 3 & 5 & 1 & 4 \end{pmatrix} \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 3 & 2 & 5 & 4 & 1 \end{pmatrix}$. (b) Calculate the inverse of $\begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 4 & 3 & 1 & 2 & 5 \end{pmatrix}$.
- 2. Write $\begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 2 & 3 & 7 & 9 & 5 & 8 & 1 & 4 & 6 \end{pmatrix}$ as a product of disjoint cycles.
- 3. How many permutations $\sigma \in S_6$ satisfy $\sigma^2 = e$?
- 4. Recall that the order of an element x is the smallest power $n \ge 1$ such that $x^n = e$.
 - (a) What is the order of (125)(34)?
 - (b) What is the order of (1467)(35)?
- 5. What is the largest order of an element of S_9 ?

Theoretical Questions

- 6. A permutation group $H \leq S_A$ on a set A is *transitive* if for any two elements $a, b \in A$, there is a permutation $\sigma \in H$ such that $\sigma(a) = b$. Show that a transitive permutation group must have at least |A| elements.
- 7. Let $B \subseteq A$. Show that the set of permutations of A that fix B, i.e. the set $\{\sigma \in S_A | (\forall b \in B) (\sigma(b) \in B)\}$ is a subgroup of S_A .
- 8. (a) Show that S_n is generated by the transpositions $(1, 2), (2, 3), \ldots, (n 1, n)$.

(b) Show that S_n is generated by just the two elements (1, 2) and $(1, 2, 3, \ldots, n)$.

- 9. Show that any subgroup of S_n which is cyclic and transitive must have order n.
- 10. Show that the set of 3-cycles generates the alternating group A_n .

11. Show that permutations σ and τ are conjugate in S_n [that is, there is a permutation θ such that $\tau = \theta \sigma \theta^{-1}$] if and only if they have the same cycle type (that is, they have the same number of cycles, and the corresponding cycles have the same size).

Bonus Questions

12. If G is a permutation group on a set X, and $x \in X$, the *stabiliser* of x is the set of elements of G which fix x. That is $\sigma_G(x) = \{g \in G | g(x) = x\}$. Show that $|G| = |O_G(x)| |\sigma_G(x)|$ where $O_G(x)$ is the orbit of x under G.