MATH 3030, Abstract Algebra
 FALL 2012
 Toby Kenney
 Homework Sheet 5
 Due: Friday 26th October: 3:30 PM

Basic Questions

1. Which of the following functions are homomorphisms?
(a) $f: S_{5} \longrightarrow S_{3}$ sending ϕ to the permutation obtained by restricting ϕ to $\{1,2,3\}$ and then relabelling the image of $\{1,2,3\}$ as $\{1,2,3\}$ in order. For example, if $\phi=\left(\begin{array}{ccccc}1 & 2 & 3 & 4 & 5 \\ 2 & 5 & 4 & 1 & 3\end{array}\right)$, then the image of $\{1,2,3\}$ is $\{2,4,5\}$, so we relabel in order $2 \mapsto 1,4 \mapsto 2$ and $5 \mapsto 3$. This gives $f(\phi)=\left(\begin{array}{lll}1 & 2 & 3 \\ 1 & 3 & 2\end{array}\right)$.
(b) $f(x)=\pi x$ from \mathbb{R} to itself (with + as the group operation).
(c) Let G be the group of 2×2 upper triangular real matrices with nonzero diagonal entries. Let $f: G \longrightarrow \mathbb{R}^{*}$ be the function sending a matrix in G to its bottom-right element.
(d) $f(x)=e^{x}$ from \mathbb{R} with + as the group operation to \mathbb{R}^{*} with multiplication as the group operation.
2. Which of the following subgroups are normal?
(a) The rational numbers as a subgroup of the real numbers.
(b) The subgroup of S_{4} generated by $\left(\begin{array}{llll}1 & 2 & 3 & 4 \\ 2 & 4 & 1 & 3\end{array}\right)$.
(c) The group of complex matrices X for which $\operatorname{det}(X)^{34}=1$. [Hint: recall from linear algebra that $\operatorname{det}(A B)=\operatorname{det}(A) \operatorname{det}(B)$.]
3. Find the kernel and image of the following homomorphisms.
(a) Let G be the the group of symmetries of a cube. Define $f: G \longrightarrow S_{4}$ by the induced permutation on the diagonals.
(b)
4. Show that the function $G \stackrel{f}{\longrightarrow} G$ given by $f(x)=x^{2}$ on a group G is a homomorphism if and only if G is abelian.

Theoretical Questions

5. Show that the composite of two homomorphisms is a homomorphism.
6. Show that a homomorphism of groups $G \xrightarrow{\phi} G^{\prime}$ is an isomorphism if and only if there is a homomorphism $G^{\prime} \xrightarrow{\phi^{\prime}} G^{\prime}$ such that the composites $\phi \phi^{\prime}$ and $\phi^{\prime} \phi$ are both the identity homomorphism.
7. Let \sim be an equivalence relation on a group G such that whenever $x \sim x^{\prime}$ and $y \sim y^{\prime}$, we also have $x x^{\prime} \sim y y^{\prime}$.
(a) Show that the subset $\{x \in G \mid x \sim e\}$, where e is the identity element of G, is a normal subgroup H.
(b) Show that the equivalence relation \sim is given by $x \sim y$ if and only if $x y^{-1} \in H$.
8. Show that any subgroup of index 2 is normal.
9. Show that if $H \leqslant G$ and N is a normal subgroup of G, then $N \cap H$ is a normal subgroup of H.
10. (a) Show that the intersection of two normal subgroups is another normal subgroup.
(b) Show that the subgroup generated by two normal subgroups is normal.
