MATH 3030, Abstract Algebra
 FALL 2012
 Toby Kenney
 Homework Sheet 8
 Due: Friday 23rd November: 3:30 PM

Basic Questions

1. Find the remainder of 6^{12345} when divided by 13 .
2. Find the remainder when 9^{123456} is divided by 91 . [Hint: $91=7 \times 13$; see Q. 7.]
3. Find the last digit of $3^{3^{3^{3^{3^{3}}}}} \quad$ (in base 10).
4. Solve:
(a) $15 x \equiv 11(\bmod 33)$
(b) $5 x \equiv 11(\bmod 33)$
5. Describe the field of quotients of the integral domain $\{a+b \sqrt{2} i \mid a, b \in \mathbb{Z}\}$.
6. Describe the field of quotients of the integral domain $\{a+b \sqrt{5} \mid a, b \in \mathbb{Z}\}$.

Theoretical Questions

7. Let $n=p q$ where p and q are prime.
(a) Show that $\phi(n)=(p-1)(q-1)$.
(b) If e and $n=p q$ are known numbers, and we are told m^{e} modulo n, how can we recover the value of m ?
8. Prove Wilson's Theorem, that if p is prime, then $(p-1)!\equiv-1(\bmod p)$. [Hint: first show that 1 and -1 are the only self-inverse elements of \mathbb{Z}_{p}.]
9. Prove the distributive law holds in the field of quotients of an integral domain.
10. If D^{\prime} is a subdomain of D, must the field of quotients of D^{\prime} be a subfield of the field of quotients of D ?
