MATH 3030, Abstract Algebra FALL 2012 Toby Kenney Homework Sheet 8 Due: Friday 23rd November: 3:30 PM

Basic Questions

- 1. Find the remainder of 6^{12345} when divided by 13.
- 2. Find the remainder when 9^{123456} is divided by 91. [Hint: $91 = 7 \times 13$; see Q. 7.]

(in base 10).

4. Solve:

(a) $15x \equiv 11 \pmod{33}$

(b) $5x \equiv 11 \pmod{33}$

- 5. Describe the field of quotients of the integral domain $\{a + b\sqrt{2}i | a, b \in \mathbb{Z}\}$.
- 6. Describe the field of quotients of the integral domain $\{a + b\sqrt{5} | a, b \in \mathbb{Z}\}$.

Theoretical Questions

- 7. Let n = pq where p and q are prime.
 - (a) Show that $\phi(n) = (p-1)(q-1)$.

(b) If e and n = pq are known numbers, and we are told m^e modulo n, how can we recover the value of m?

- 8. Prove Wilson's Theorem, that if p is prime, then $(p-1)! \equiv -1 \pmod{p}$. [Hint: first show that 1 and -1 are the only self-inverse elements of \mathbb{Z}_p .]
- 9. Prove the distributive law holds in the field of quotients of an integral domain.
- 10. If D' is a subdomain of D, must the field of quotients of D' be a subfield of the field of quotients of D?