MATH 3030, Abstract Algebra FALL 2012 Toby Kenney Homework Sheet 9 Due: Friday 30th November: 3:30 PM

Basic Questions

- 1. Factorise $x^4 + 3x^3 + 2x^2 + 9x 3$:
 - (a) over \mathbb{Z}_3 .
 - (b) over \mathbb{Z}_6 .
 - (c) over \mathbb{Z} .
- 2. Show that $f(x) = x^4 + x^3 + x^2 + x + 1$ is irreducible over \mathbb{Z} . [Hint: consider x = y + 1 and use Eisenstein's criterion.]
- 3. Find all solutions to the equation $x^2 + 2x 3 = 0$ in \mathbb{Z}_{21} .
- 4. Find all prime numbers p such that x-4 is a factor of $x^4-2x^3+3x^2+x-2$ in $\mathbb{Z}_p[x]$.
- 5. Find a generator for the multiplicative group of non-zero elements of \mathbb{Z}_{19} .
- 6. Show that $f(x) = x^2 + 3x + 2$ does not factorise uniquely over \mathbb{Z}_6 .
- 7. Show that $f(x) = x^3 + 4x^2 + 1$ is irreducible in \mathbb{Z}_7 . [Hint: if it is not irreducible then it must have a linear factor.]

Theoretical Questions

- 8. Show that if D is an integral domain, then so is D[x].
- 9. Let R be a ring. (a) Show that the ring of functions from R to R is a ring with pointwise addition and multiplication. That is:

$$(f+g)(x) = f(x) + g(x)$$
$$fg(x) = f(x)g(x)$$

(b) Show that the set of all functions describable by polynomials gives a subring of the ring of all functions.

(c) Show that this ring is not always isomorphic to the polynomial ring R[x]. [Hint: let R be a finite field \mathbb{Z}_p for some prime p.]

10. Show that the remainder when a polynomial $f(x) \in F[x]$ is divided by x - a is f(a).