MATH 3030, Abstract Algebra
 FALL 2012
 Toby Kenney
 Homework Sheet 9
 Due: Friday 30th November: 3:30 PM

Basic Questions

1. Factorise $x^{4}+3 x^{3}+2 x^{2}+9 x-3$:
(a) over \mathbb{Z}_{3}.
(b) over \mathbb{Z}_{6}.
(c) over \mathbb{Z}.
2. Show that $f(x)=x^{4}+x^{3}+x^{2}+x+1$ is irreducible over \mathbb{Z}. [Hint: consider $x=y+1$ and use Eisenstein's criterion.]
3. Find all solutions to the equation $x^{2}+2 x-3=0$ in \mathbb{Z}_{21}.
4. Find all prime numbers p such that $x-4$ is a factor of $x^{4}-2 x^{3}+3 x^{2}+x-2$ in $\mathbb{Z}_{p}[x]$.
5. Find a generator for the multiplicative group of non-zero elements of \mathbb{Z}_{19}.
6. Show that $f(x)=x^{2}+3 x+2$ does not factorise uniquely over \mathbb{Z}_{6}.
7. Show that $f(x)=x^{3}+4 x^{2}+1$ is irreducible in \mathbb{Z}_{7}. [Hint: if it is not irreducible then it must have a linear factor.]

Theoretical Questions

8. Show that if D is an integral domain, then so is $D[x]$.
9. Let R be a ring. (a) Show that the ring of functions from R to R is a ring with pointwise addition and multiplication. That is:

$$
\begin{aligned}
(f+g)(x) & =f(x)+g(x) \\
f g(x) & =f(x) g(x)
\end{aligned}
$$

(b) Show that the set of all functions describable by polynomials gives a subring of the ring of all functions.
(c) Show that this ring is not always isomorphic to the polynomial ring $R[x]$. [Hint: let R be a finite field \mathbb{Z}_{p} for some prime p.]
10. Show that the remainder when a polynomial $f(x) \in F[x]$ is divided by $x-a$ is $f(a)$.

