MATH 3030, Abstract Algebra
Winter 2012
Toby Kenney
Midterm Examination
Monday 18th February: 2:35-3:25 PM

Basic Questions

1. Let $R=\mathbb{Z}_{4} \times \mathbb{Z}_{2}$. Let I be the ideal of R generated by $(2,1)$.
(a) What is the ideal I ?
(b) What is the factor ring R / I ?
2. What is $\operatorname{Irr}(\sqrt{3}+\sqrt{5}, \mathbb{Q})$?
3. Let α be a zero of $f(x)=x^{2}-2$ in $\mathrm{GF}(25)$. Find a generator of the multiplicative group of nonzero elements of $\mathrm{GF}(25)$. [Write the generator as a polynomial in α.]
4. Compute a composition series for $D_{5} \times D_{4}$. Is $D_{5} \times D_{4}$ solvable?

Theoretical Questions

5. Prove that for a field F, every ideal in the polynomial ring $F[x]$ is principal.
6. Show that any finite extension field E of a field F is algebraic over F.
7. Show that any non-zero ring homomorphism between two fields is one-toone.
8. Let F be a field. Let $F(\alpha)$ be algebraic over F.
(a) Show that if $[F(\alpha): F]$ is odd, then $F\left(\alpha^{2}\right)=F(\alpha)$.
(b) [Bonus] If $[F(\alpha): F]$ is not divisible by 3, must $F\left(\alpha^{3}\right)=F(\alpha)$? [Give a proof or a counterexample.]
