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Basic Questions

1. Let R = Z4 × Z2. Let I be the ideal of R generated by (2, 1).

(a) What is the ideal I?

R is commutative, so we only need to consider multiplication on one side.
We see that (0, 1)(2, 1) = (0, 1) and (1, 0)(2, 1) = (2, 0), so I must contain
(0, 1) and (2, 0). I is a subgroup, so it must contain the subgroup generated
by these elements, namely {(0, 0), (0, 1), (2, 0), (2, 1)}. This set is closed
under multiplication by arbitrary elements of R, so it is the ideal generated
by (2, 1).

(b) What is the factor ring R/I?

R has 8 elements, and I has 4 elements, so R/I has 2 elements. R is
unital, so R/I is also unital. The only unital ring with 2 elements is Z2,
so R/I ∼= Z2.

2. What is Irr(
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√

5,Q)?

Computing powers of
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√
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√

3 + 14
√

5

(
√

3 +
√

5)4 = 124 + 32
√

15

From this we see that
√

3+
√

5 is a zero of x4−16x2+4. This is irreducible,
since {1,

√
3+
√

5, (
√

3+
√

5)2, (
√

3+
√

5)3} are clearly linearly independent
over Q, so

√
3 +
√

5 has degree 4 over Q, and is not a zero of any non-zero
polynomial of lower degree.

3. Let α be a zero of f(x) = x2 − 2 in GF(25). Find a generator of the
multiplicative group of nonzero elements of GF(25).

We know that the multiplicative group of nonzero elements of GF(25) has
24 elements. Furthermore, we see that α2 = 2, α4 = 4 and α8 = 1, so α
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has order 8 in this group. We therefore need to find a cube root of α. We
try α+ 1, and we get (α+ 1)3 = α3 + 3α2 + 3α+ 1 = 2α+ 1 + 3α+ 1 = 2
Therefore, α + 1 has order 12. This leads us to try α(α + 1) = α + 2,
where we see (α + 2)3 = α3 + α2 + 2α + 3 = 4α = α5. Since 5 and 8 are
coprime, α5 has order 8, so α+ 2 has order 24, i.e. it is a generator of the
multiplicative group.

4. Compute a composition series for D5 ×D4. Is D5 ×D4 solvable?

One composition series is Z5 × {e} 6 D5 × {e} 6 D5 × Z2 6 D5 × Z4 6
D5 ×D4, where the cyclic groups are all groups of rotations.

It is easy to see that the order of each factor group in this composition
series is prime, so the factor group must be abelian. Therefore, D5 ×D4

is solvable.

Theoretical Questions

5. Prove that for a field F , every ideal in the polynomial ring F [x] is principal.

Let I be an ideal in F [x]. If I is the zero ideal, then the result is obvi-
ous. Let f be a non-zero polynomial of smallest degree n in I (i.e. all
polynomials in I are of degree at least n). We will show that any other
polynomial g in I is divisible by f , since by the division algorithm, we
have that g = qf + r where either r = 0 or the degree of r is less than the
degree of f . However, since g ∈ I and f ∈ I, we have that r = g− qf ∈ I,
and since n is the smallest degree of a non-zero polynomial in I, and r
has degree less than n, this means that r = 0. Therefore, g = qf . Since
g is an arbitrary element of I, we have shown that I is the principal ideal
generated by f .

6. Show that any finite extension field E of a field F is algebraic over F .

Let the dimension of E over F be n. Let α ∈ E, and consider the set
{1, α, . . . , αn}. Since this has n+ 1 elements, it can’t be linearly indepen-
dent, so there is some linear combination a0 +a1α+ · · ·+anα

n = 0, where
a0, . . . , an ∈ F . This means that α is a zero of a0 + a1x + · · · + anx

n in
F [x], so α is algebraic over F . Therefore, E is algebraic over F .

7. Show that any non-zero ring homomorphism between two fields is one-to-
one.

If φ : F //E is a non-zero ring homomorphism between two fields, then
we know that the kernel of φ is an ideal of F . Since F is a field its only
ideals are the trivial ideal and the improper ideal. If the kernel of φ were
the improper ideal, φ would be the zero homomorphism, so the kernel of
φ must be the trivial ideal, which means that φ is one-to-one.

8. Let F be a field. Let F (α) be algebraic over F .
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(a) Show that if [F (α) : F ] is odd, then F (α2) = F (α).

Since α2 ∈ F (α), we know that F (α2) is a subfield of F (α). Furthermore,
it is easy to see that {1, α} is a spanning set for F (α) over F (α2), so
[F (α) : F (α2)] 6 2. Since [F (α) : F ] = [F (α) : F (α2)][F (α2) : F ] is odd,
so is [F (α) : F (α)], so it must be 1, i.e. F (α) = F (α2).

(b) [Bonus] If [F (α) : F ] is not divisible by 3, must F (α3) = F (α)? [Give
a proof or a counterexample.]

This is not necessarily the case, since we only have that [F (α) : F (α3)] 6 3,
since α is a zero of the polynomial x3 − α3. However, if this polynomial
has a zero in F (α3), then it is reducible, and α could be of degree 2 over

F (α3). The easiest example of this is if F = Q and α = −1+
√
3i

2 is a
complex cube root of 1. Then Q(α3) = Q, and F (α) 6= F (α3).
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