MATH 3030, Abstract Algebra FALL 2012
 Toby Kenney
 Midterm Examination
 Model Solutions

Basic Questions

1. Which of the following are groups:
(a) The set of functions $f: \mathbb{R} \rightarrow \mathbb{R}$ such that $f(1)=0$ with pointwise addition (i. e. $(f+g)(x)=f(x)+g(x)$).
This is a group. Pointwise addition is well-defined on this set, and is clearly associative. The constantly zero function is the identity, and the inverse function of f is g given by $g(x)=-f(x)$.
(b) The set of functions $f: \mathbb{R} \rightarrow \mathbb{R}$ such that $f(1)=4$ with pointwise addition (i. e. $(f+g)(x)=f(x)+g(x))$.
This is not a group since the operation is not well-defined on the set - if we add two functions f and g in this set, we will have $(f+g)(1)=4+4=8$, so the pointwise sum is not in the set.
2. How many generators are there in the cyclic group \mathbb{Z}_{36} ?

Generators of this group are numbers that are coprime to 36 . That is, the generators are $\{1,5,7,11,13,17,19,23,25,29,31,35\}$, so there are 12 generators.
3. Which of the following are subgroups of $\mathbb{Z} \times \mathbb{Z}$?
(a) The set of all pairs (a, b) such that $a^{2}+b^{2}$ is a square number (i.e. $a^{2}+b^{2}=c^{2}$ for some $c \in \mathbb{Z}$.)
This is not a subgroup because it is not closed. For example it contains $(3,4)$ and $(4,3)$ but not $(3,4)+(4,3)=(7,7)$.
(b) The set of all pairs (a, b) such that $a \geqslant b$.

This is not a subgroup because it is not closed under inverses. For example it contains $(3,1)$ but not $(-3,-1)$.
4. (a) Write $\sigma=\left(\begin{array}{lllllllll}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 2 & 5 & 4 & 3 & 7 & 8 & 1 & 6 & 9\end{array}\right)$ as a product of disjoint cycles.
$\sigma=(1257)(34)(68)$.
(b) What is the order of σ ?

The order of σ is the least common multiple of its cycle lengths, which is 4.
(c) Which of the following permutations are conjugate to σ in S_{9} ?
(i) $\left(\begin{array}{lllllllll}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 2 & 5 & 9 & 3 & 7 & 8 & 1 & 6 & 4\end{array}\right)$
(ii) $\left(\begin{array}{lllllllll}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 5 & 2 & 7 & 9 & 1 & 8 & 4 & 6 & 3\end{array}\right)$
(iii) $\left(\begin{array}{lllllllll}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 4 & 3 & 2 & 1 & 5 & 6 & 8 & 9 & 7\end{array}\right)$

A permutation is conjugate to σ if and only if it is of the same cycle type. The above permutations have the following representations as products of disjoint cycles:
(i) $(1257)(394)(68)$
(ii) $(15)(3749)(68)$
(iii) $(14)(23)(789)$
so only (ii) is conjugate to σ.
5. Is the subgroup of S_{5} generated by (12)(345) and (35) normal?

This subgroup is the group of permutations that fix the set $\{1,2\}$. This is not normal, since conjugation by (13) for example does not fix this group.
6. Consider the function $f: G L(3, \mathbb{R}) \rightarrow \mathbb{R}$, where $G L(3, \mathbb{R})$ is the group of 3×3 invertible matrices under matrix multiplication, and f is the function sending a matrix to its trace (the sum of the diagonal elements). Is f a homomorphism?
This is not a homomorphism, since for example, the trace of the identity is 3 , and $3 \times 3 \neq 3$.
7. Calculate the centre of $D_{4} \times D_{6}$.

Elements (a, x) and (b, y) of $D_{4} \times D_{6}$ commute if and only if a and b commute and x and y commute, so the centre of $D_{4} \times D_{6}$ consists of pairs of the form (x, y) where x is in the centre of D_{4} and y is in the centre of D_{6}. Both these centres consist of the identity and rotation by 180°, so the centre of $D_{4} \times D_{6}$ is isomorphic to $\mathbb{Z}_{2} \times \mathbb{Z}_{2}$.

Theoretical Questions

8. Prove that the intersection of two subgroups of a group is another subgroup.

Let H and K be subgroups of a group G. We want to show that $H \cap K$ is a subgroup of G.

- If $x, y \in H \cap K$, then $x, y \in H$, so $x y \in H$ since H is a subgroup, and also $x, y \in K$, so $x y \in K$ since K is a subgroup. Therefore, $x y \in H \cap K$.
- We have $e \in H$ and $e \in K$, so $e \in H \cap K$.
- If $x \in H \cap K$, then $x^{-1} \in H$ and $x^{-1} \in K$, so $x^{-1} \in H \cap K$.

9. State and prove Lagrange's theorem about the order of a subgroup of a finite group.

Theorem 1 (Lagrange). If G is a finite group, and H is a subgroup of G, then $|H|$ divides $|G|$.

Proof. Consider the cosets $x H$ for elements $x \in G$. These form a partition of G. Each of them has $|H|$ elements, and G is the disjoint union of these cosets, so $|G|$ is a sum of copies of $|H|$, so it is divisible by $|H|$.
10. Let H be an abelian normal subgroup of G. Show that the subgroup generated by H and the centre $Z(G)$ is also abelian and normal.
Let K be the subgroup generated by H and $Z(G)$. Clearly any two generators of K commute, since either one of them is in $Z(G)$ and therefore commutes with any element of G, or they are both in H and commute because H is abelian. Therefore, K is abelian. We want to show that K is normal. Let $x \in G$. Since conjugation by x is an automorphism of G (an isomorphism from G to itself), we have that $x K x^{-1}$ is a subgroup of G, generated by $x H x^{-1}=H$ and $x Z(G) x^{-1}=Z(G)$. Therefore $x K x^{-1}=K$, so since x was arbitrary, K is a normal subgroup of G.

