MATH 3030, Abstract Algebra FALL 2012 Toby Kenney Midterm Examination Model Solutions

Basic Questions

1. Which of the following are groups:

(a) The set of functions $f : \mathbb{R} \to \mathbb{R}$ such that f(1) = 0 with pointwise addition (i. e. (f+g)(x) = f(x) + g(x)).

This is a group. Pointwise addition is well-defined on this set, and is clearly associative. The constantly zero function is the identity, and the inverse function of f is g given by g(x) = -f(x).

(b) The set of functions $f : \mathbb{R} \to \mathbb{R}$ such that f(1) = 4 with pointwise addition (i. e. (f+g)(x) = f(x) + g(x)).

This is not a group since the operation is not well-defined on the set — if we add two functions f and g in this set, we will have (f+g)(1) = 4+4 = 8, so the pointwise sum is not in the set.

2. How many generators are there in the cyclic group \mathbb{Z}_{36} ?

Generators of this group are numbers that are coprime to 36. That is, the generators are $\{1, 5, 7, 11, 13, 17, 19, 23, 25, 29, 31, 35\}$, so there are 12 generators.

3. Which of the following are subgroups of $\mathbb{Z} \times \mathbb{Z}$?

(a) The set of all pairs (a,b) such that $a^2 + b^2$ is a square number (i.e. $a^2 + b^2 = c^2$ for some $c \in \mathbb{Z}$.)

This is not a subgroup because it is not closed. For example it contains (3, 4) and (4, 3) but not (3, 4) + (4, 3) = (7, 7).

(b) The set of all pairs (a, b) such that $a \ge b$.

This is not a subgroup because it is not closed under inverses. For example it contains (3, 1) but not (-3, -1).

- 4. (a) Write $\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 2 & 5 & 4 & 3 & 7 & 8 & 1 & 6 & 9 \end{pmatrix}$ as a product of disjoint cycles.
 - $\sigma = (1257)(34)(68).$

(b) What is the order of σ ?

The order of σ is the least common multiple of its cycle lengths, which is 4.

(c) Which of the following permutations are conjugate to σ in S_9 ?

(i) $\begin{pmatrix} 1\\ 2 \end{pmatrix}$	$\frac{2}{5}$	$\frac{3}{9}$	$\frac{4}{3}$	5 7	$\frac{6}{8}$	71	8 6	$\begin{pmatrix} 9\\4 \end{pmatrix}$
(ii) $\begin{pmatrix} 1\\5 \end{pmatrix}$	$\frac{2}{2}$	$\frac{3}{7}$	$\frac{4}{9}$	$5 \\ 1$	$\frac{6}{8}$	$7\\4$	8 6	$\begin{pmatrix} 9\\3 \end{pmatrix}$
$(iii) \left(\begin{array}{c} 1\\ 4 \end{array} \right)$	2 3	$\frac{3}{2}$	$4 \\ 1$	$5\\5$	6 6	$7 \\ 8$	$\frac{8}{9}$	$\begin{pmatrix} 9\\7 \end{pmatrix}$

A permutation is conjugate to σ if and only if it is of the same cycle type. The above permutations have the following representations as products of disjoint cycles:

(i) (1257)(394)(68)

(ii) (15)(3749)(68)

(iii) (14)(23)(789)

so only (ii) is conjugate to σ .

5. Is the subgroup of S_5 generated by (12)(345) and (35) normal?

This subgroup is the group of permutations that fix the set $\{1, 2\}$. This is not normal, since conjugation by (13) for example does not fix this group.

6. Consider the function f : GL(3, ℝ) → ℝ, where GL(3, ℝ) is the group of 3×3 invertible matrices under matrix multiplication, and f is the function sending a matrix to its trace (the sum of the diagonal elements). Is f a homomorphism?

This is not a homomorphism, since for example, the trace of the identity is 3, and $3 \times 3 \neq 3$.

7. Calculate the centre of $D_4 \times D_6$.

Elements (a, x) and (b, y) of $D_4 \times D_6$ commute if and only if a and b commute and x and y commute, so the centre of $D_4 \times D_6$ consists of pairs of the form (x, y) where x is in the centre of D_4 and y is in the centre of D_6 . Both these centres consist of the identity and rotation by 180°, so the centre of $D_4 \times D_6$ is isomorphic to $\mathbb{Z}_2 \times \mathbb{Z}_2$.

Theoretical Questions

8. Prove that the intersection of two subgroups of a group is another subgroup.

Let H and K be subgroups of a group G. We want to show that $H \cap K$ is a subgroup of G.

• If $x, y \in H \cap K$, then $x, y \in H$, so $xy \in H$ since H is a subgroup, and also $x, y \in K$, so $xy \in K$ since K is a subgroup. Therefore, $xy \in H \cap K$.

- We have $e \in H$ and $e \in K$, so $e \in H \cap K$.
- If $x \in H \cap K$, then $x^{-1} \in H$ and $x^{-1} \in K$, so $x^{-1} \in H \cap K$.
- 9. State and prove Lagrange's theorem about the order of a subgroup of a finite group.

Theorem 1 (Lagrange). If G is a finite group, and H is a subgroup of G, then |H| divides |G|.

Proof. Consider the cosets xH for elements $x \in G$. These form a partition of G. Each of them has |H| elements, and G is the disjoint union of these cosets, so |G| is a sum of copies of |H|, so it is divisible by |H|.

10. Let H be an abelian normal subgroup of G. Show that the subgroup generated by H and the centre Z(G) is also abelian and normal.

Let K be the subgroup generated by H and Z(G). Clearly any two generators of K commute, since either one of them is in Z(G) and therefore commutes with any element of G, or they are both in H and commute because H is abelian. Therefore, K is abelian. We want to show that K is normal. Let $x \in G$. Since conjugation by x is an automorphism of G (an isomorphism from G to itself), we have that xKx^{-1} is a subgroup of G, generated by $xHx^{-1} = H$ and $xZ(G)x^{-1} = Z(G)$. Therefore $xKx^{-1} = K$, so since x was arbitrary, K is a normal subgroup of G.