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Basic Questions

. Compute the factor group Zs x Zg/{(1,6)).

The subgroup generated by (1,6) is {(1,6),(2,3),(0,0)}, so the factor
group has %7 = 9 elements. It must also be abelian, so it is either Zg or
Zs x Zsz. We need to check whether the factor group has an element of
order 9. Consider [(0,1)]: it is easy to see that the cube of this is [(0, 3)],
which is not the identity coset. Therefore, this element does not have
order 3 in the factor group. Therefore, the factor group is isomorphic to
Zg.

. Are the following rings: Justify your answers.

(a) The integers with the usual addition, and multiplication given by a x b
s the least common multiple of a and b.

This is not a ring because multiplication does not distribute over addition.
For example 3% (24 1) =3%3=3,but 3x2+3x1=6+3=09.

(b) The positive integers with addition given by a+b is the greatest common
divisor of a and b, and multiplication given by a x b is the least common
multiple of a and b.

This is not a ring because it is not a group under + — there is no identity
element for greatest common divisor. [If we include 0, then that is an
identity element, but we don’t have inverses, since 0 is not the greatest
common divisor of any two numbers.

. Let P be the ring of subsets of a set X with 5 elements, with addition
given by symmetric difference and multiplication given by intersection.
[The symmetric difference of two sets A and B is the set of elements that
occur in exactly one of them.] Is P an integral domain? (Justify your
answer.) [You may assume that P is a ring.]

P is not an integral domain, because for example if X = {1,2,3,4,5}, we
have that {1} N {2} = 0.

. What are the units in the ring Zq5?

The units in this ring are numbers coprime to 15, i.e. {1,2,4,7,8,11,13,14}.

. Show that the set of numbers of the form a+bv/'5 where a and b are rational
numbers is a field.



It is clear that this set is closed under addition, multiplication, since (a 4+
bv/5)(c + dv/5) = (ac + 5bd) + (ad + be)y/5, and additive inverses, and so
it is a subring of the real numbers, so it is a commutative ring. It clearly
contains the unity, so we just need to show it is closed under multiplicative
inverses. We have that a+i\/5 = a2—a5b2 — a2—b5b2 5, so it is closed under

multiplicative inverses, so it is a field.

6. Factorise z* + 53 + 322 — 3z — 18
(a) over Zg.
Looking for zeros, we see
T ‘ ot 4+ 523 4 322 — 32 — 18
0 0
1 0

So we know that = and = — 1 are factors. Dividing through, we see % +
523 + 322 — 3x — 18 = x(x — 1)(2? + 3) in Zg.

7. Show that f(r) = 2* — 23 + 322 + 3z + 2 is drreducible over Z. [Hint:
consider x =y + 2 and use Fisenstein’s criterion.]
Substituting x = y+2, we get f(x) = (y+2)*— (y+2)>+3(y+2)>+3(y+
2) + 2 = y* + 7y + 21y? + 35y + 28. Therefore by Eisenstein’s criterion
with p = 7, this is irreducible.

8. Find all solutions to the equation 2 — 9z + 14 =0 in Zys.
Trying a few values:

x| 2?2 -9z + 14

0 14
1 6
2 0

We see that 2 is a zero. This allows us to factorise the polynomial as
(x — 2)(x — 7). This immediately gives that 2 and 7 are zeros. Also, we
can get zeros by setting x — 2 and x — 7 to zero divisors. 41 =2 x3 X 7, so
we need to look at multiples of these numbers which differ by 5. Looking
at all the cases, we get the following zeros.

r—2|x—7| x
0 -5 2
5 0 7
21 16 23
14 9 16
35 30 37
12 7 14
33 28 35
26 21 28

9. Show that f(z) = x® — 222 + 2 is irreducible in Zs.
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If it is irreducible, it must have a linear factor, so it must have a zero. We
try all possibilities:

x| 2% —22%2 42

W RO
W = =N

4

Therefore f has no zeros, so it is irreducible.

Find the remainder when 81925 is divided by 17.

We know that 86 = 1 (mod 17), so 812% = 1 (mod 17). Therefore
81025 =8 (mod 17), so the remainder is 8.

9
8
67

Find the remainder when 2345 18 divided by 11.

78°
We know that 2! =1 (mod 11), so we need to find 3" modulo 10. We
6789 456789
know that 3* = 1 (mod 10),s03* =1 (mod 10), so 23 =2l=2
(mod 11).
Solve:

(a) 21z = 22 (mod 33)
21 and 33 are both divisible by 3, but 22 is not, so this has no solutions.
(b) 2z =6 (mod 21)

2 and 21 are coprime so this has a unique solution, which is z = 3.

Theoretical Questions

Let H be a subgroup of G. Show that Ng(H) = {z € GlxHx~! = H} is a
subgroup of G, and contains H as a normal subgroup.

We first need to show that Ng(H) is a subgroup.

o Let 2,y € Ng(H). Now xyH (zy)~! = ayHy ‘2~ ! = zHa™! = H,
so xy € Ng(H).

o Let z € Ng(H). Then zHz™! = H, so xtH = Hzx and so H =
x~'Hz. Therefore 7! € Ng(H).

o Clearly e € Nq(H).

Next we need to show that H is a normal subgroup of Ng(H), but this is
automatic by the definition of Ng(H). Finally we need to show that H is
contained in Ng(H). For h € H, we clearly have hHh~! = H, since H is
a subgroup of G.
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Show that the intersection of two subrings of a ring is a Ting.

The characteristic of a field must be prime or 0. Let F' be a field with 6
elements. The additive subgroup generated by 1 must have 1, 2, 3, or 6
elements. It can’t have 1 or 6 elements, since the characteristic of F' is
prime. Suppose F' has characteristic 3. Now all the non-zero elements can
be partitioned into pairs of the form {z, 2z}. However, there are 5 non-zero
elements, so this is not possible. Therefore, F must have characteristic 2.
However, the additive group of F' is an abelian group with 6 elements, so
must be isomorphic to Zg, or Zs X Z3z. However, either possibility involves
an element of order 3, but this contradicts characteristic 2.

Show that there is no field with exactly 6 elements.

The characteristic of a field must be prime or 0. Let F' be a field with 6
elements. The additive subgroup generated by 1 must have 1, 2, 3, or 6
elements. It can’t have 1 or 6 elements, since the characteristic of F' is
prime. Suppose F' has characteristic 3. Now all the non-zero elements can
be partitioned into pairs of the form {x, 22:}. However, there are 5 non-zero
elements, so this is not possible. Therefore, F' must have characteristic 2.
However, the additive group of F' is an abelian group with 6 elements, so
must be isomorphic to Zg, or Zs X Zs. However, either possibility involves
an element of order 3, but this contradicts characteristic 2.

Prove that addition and multiplication are well defined in the field of quo-
tients of an integral domain.

Recall that addition and multiplication are defined by [(a,b)] + [(c,d)] =
[(ad 4 be,bd)] and [(a,b)][(c,d)] = [(ac,bd)] respectively. Showing that
these are well-defined means showing that the pairs (ad + be,bd) and
(ac,bd) are valid pairs in the field of quotients (recall that the field of
quotients consists of equivalence classes of pairs (z,y) with y # 0, so
this just means showing that bd # 0) and that the answer doesn’t de-
pend on the choice of representatives of the equivalence classes. That
is, we need to show that if (a’,b') ~ (a,b) and (¢,d") ~ (c¢,d), then
(ad + be,bd) ~ (a'd +b'c,b'd") and (ac,bd) ~ (a’'d',b'd"). For showing
that bd # 0, since R is an integral domain, and we have that b # 0 and
d # 0, we must have bd # 0.

Recall that (a,b) ~ (a’,b') if and only if ab’ = a’b, so given that

ab =ad'b
cd =cd
We need to show

(ad + be)(V'd') = (a'd + ') (bd)
act/d = a’c'bd
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The second of these is easy — ach'd’ = ab'cd’ = a’bed’ = a’bc’d = o' c'bd.
For the first, we have that adb’d’ = ab’dd’ = a’bdd’ = a’d’bd, and beb'd’ =
bb'cd = bb'd'd = b''bd, and adding these gives the required equation.

State and prove the factor theorem for the polynomial ring over a field.

Theorem 1 (Factor Theorem). For a field F, and a polynomial f € F[z],
an element o € F is a zero of f if and only if x — « is a factor of f.

Proof. Let a be a zero of f. By the division algorithm, we have f(z) =
(x — a)q(z) 4+ r(x), where the degree of r is less than 1 (the degree of
(z — «)). This means that r is a constant polynomial of the form ¢ for
some ¢ € F, so we have f(z) = (x — a)q(z) + ¢. Now applying the
evaluation homomorphism ¢,, we get ¢ (f) = da(x — @)da(q) + dulc).
Since « is a zero of f, we have that ¢, (f) = 0, and clearly, ¢, (x —a) = 0,
so this equation gives that ¢ = ¢, (c) = 0. That is f(z) = (x — a)g(x), so
x — « is a factor of f.

Conversely, suppose (z — «) is a factor of f. Then we have f(x) = (=

a)g(z) for some g € Flz]. Applying ¢ gives da(f) = 0¢a(g) = 0.
Therefore « is a zero of f.

O« |

Let G be a group of order pq for distinct odd primes p and q with p < q.
Show that G contains an element of order p. [Hint: show that otherwise
all elements have order q, and in that case, consider the cyclic subgroups.]

The order of an element divides the order of the group, so the only possible
orders of elements of G are 1, p, ¢ and pq. The only element of order 1 is
the identity. If x is an element of order pq, then x? is of order p. Therefore,
if G does not contain an element of order p, then all non-identity elements
are of order ¢q. Now the cyclic groups generated by each element must
either be equal, or have only the identity in common, any non-identity
element in a cyclic group of prime order generates the group, so if two
cyclic supgroups H and K of G have an element x # e in common, then
they also both contain () = H = K, so they are the same subgroup.
Therefore, the non-identity elements of GG are a disjoint union of the non-
identity elements in these cyclic subgroups. Each cyclic subgroup has
g — 1 elements, so the total number of non-identity elements in G (which
is pg — 1) is divisible by ¢ — 1. However, subtracting from p(q — 1), this
would give that p(¢ — 1) — (pg — 1) = p — 1 is divisible by ¢ — 1. However,
since p < ¢, we have that p — 1 < ¢ — 1, so it is not divisible by ¢ — 1.

(a) Show that a polynomial of degree n in Fx] for a field F' can have at
most n zeros.

Proof by induction. It is clear that a non-zero polynomial of degree 0 has
no Zeros.

Now suppose the result is true for n — 1. Let f € F[z] be a polynomial of
degree n. If f has no zeros, then we are done. Otherwise, suppose « is a



zero of f. By the factor theorem, we have f(z) = (z — a)q(z) for some ¢
of degree n — 1. Now since F' is a field, and therefore an integral domain,
any zero of f must either be a zero of x — «, or a zero of q. Clearly, the
only zero of z — « is «, and by the induction hypothesis, ¢ has at most
n — 1 zeros, so the most zeros f can have is 1 + (n — 1) = n as required.

(b) Deduce that the multiplicative group of non-zero elements in a finite
field is cyclic.  (Recall the classification theorem for finitely generated
abelian groups.)

Let F' be a finite field with ¢ elements. The multiplicative group of non-
zero elements is a finite (and therefore finitely generated) abelian group, so
by the classification of finitely generated abelian groups, it is isomorphic to
ZLipn1 X+ + X Ly, i, for primes py, ..., pr and positive integers ny, ..., ng.
Now let m be the least common multiple of the p;". Any element of any
Zp;»: has order dividing m, so every element of Zj, n1 X -+ X Zp,n has
order dividing m. This means that any x € F'\ {0} satisfies ™ — 1 = 0.
That is, the polynomial ™ — 1 has ¢ — 1 zeros in F. Therefore, we must
have m > g—1 = p;™ ---p™*. However, if the least common multiple of
the p;™ is also their product (it clearly can’t be larger than their product),
then they must be coprime, i.e. the p; must all be distinct. In this case,
the product Zy,n1 X -+ X Zp, » is cyclic of order m, as required.



