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Midyear Examination
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Basic Questions

1. Compute the factor group Z3 × Z9/〈(1, 6)〉.
The subgroup generated by (1, 6) is {(1, 6), (2, 3), (0, 0)}, so the factor
group has 27

3 = 9 elements. It must also be abelian, so it is either Z9 or
Z3 × Z3. We need to check whether the factor group has an element of
order 9. Consider [(0, 1)]: it is easy to see that the cube of this is [(0, 3)],
which is not the identity coset. Therefore, this element does not have
order 3 in the factor group. Therefore, the factor group is isomorphic to
Z9.

2. Are the following rings: Justify your answers.

(a) The integers with the usual addition, and multiplication given by a ∗ b
is the least common multiple of a and b.

This is not a ring because multiplication does not distribute over addition.
For example 3 ∗ (2 + 1) = 3 ∗ 3 = 3, but 3 ∗ 2 + 3 ∗ 1 = 6 + 3 = 9.

(b) The positive integers with addition given by a+b is the greatest common
divisor of a and b, and multiplication given by a ∗ b is the least common
multiple of a and b.

This is not a ring because it is not a group under + — there is no identity
element for greatest common divisor. [If we include 0, then that is an
identity element, but we don’t have inverses, since 0 is not the greatest
common divisor of any two numbers.

3. Let P be the ring of subsets of a set X with 5 elements, with addition
given by symmetric difference and multiplication given by intersection.
[The symmetric difference of two sets A and B is the set of elements that
occur in exactly one of them.] Is P an integral domain? (Justify your
answer.) [You may assume that P is a ring.]

P is not an integral domain, because for example if X = {1, 2, 3, 4, 5}, we
have that {1} ∩ {2} = ∅.

4. What are the units in the ring Z15?

The units in this ring are numbers coprime to 15, i.e. {1, 2, 4, 7, 8, 11, 13, 14}.

5. Show that the set of numbers of the form a+b
√

5 where a and b are rational
numbers is a field.

1



It is clear that this set is closed under addition, multiplication, since (a+
b
√

5)(c+ d
√

5) = (ac+ 5bd) + (ad+ bc)
√

5, and additive inverses, and so
it is a subring of the real numbers, so it is a commutative ring. It clearly
contains the unity, so we just need to show it is closed under multiplicative
inverses. We have that 1

a+b
√
5

= a
a2−5b2 −

b
a2−5b2

√
5, so it is closed under

multiplicative inverses, so it is a field.

6. Factorise x4 + 5x3 + 3x2 − 3x− 18

(a) over Z6.

Looking for zeros, we see

x x4 + 5x3 + 3x2 − 3x− 18
0 0
1 0

So we know that x and x − 1 are factors. Dividing through, we see x4 +
5x3 + 3x2 − 3x− 18 = x(x− 1)(x2 + 3) in Z6.

7. Show that f(x) = x4 − x3 + 3x2 + 3x + 2 is irreducible over Z. [Hint:
consider x = y + 2 and use Eisenstein’s criterion.]

Substituting x = y+2, we get f(x) = (y+2)4−(y+2)3 +3(y+2)2 +3(y+
2) + 2 = y4 + 7y3 + 21y2 + 35y + 28. Therefore by Eisenstein’s criterion
with p = 7, this is irreducible.

8. Find all solutions to the equation x2 − 9x+ 14 = 0 in Z42.

Trying a few values:

x x2 − 9x+ 14
0 14
1 6
2 0

We see that 2 is a zero. This allows us to factorise the polynomial as
(x − 2)(x − 7). This immediately gives that 2 and 7 are zeros. Also, we
can get zeros by setting x−2 and x−7 to zero divisors. 41 = 2×3×7, so
we need to look at multiples of these numbers which differ by 5. Looking
at all the cases, we get the following zeros.

x− 2 x− 7 x
0 -5 2
5 0 7
21 16 23
14 9 16
35 30 37
12 7 14
33 28 35
26 21 28

9. Show that f(x) = x3 − 2x2 + 2 is irreducible in Z5.
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If it is irreducible, it must have a linear factor, so it must have a zero. We
try all possibilities:

x x3 − 2x2 + 2
0 2
1 1
2 1
3 3
4 4

Therefore f has no zeros, so it is irreducible.

10. Find the remainder when 81025 is divided by 17.

We know that 816 ≡ 1 (mod 17), so 81024 ≡ 1 (mod 17). Therefore
81025 ≡ 8 (mod 17), so the remainder is 8.

11. Find the remainder when 23
45

67
89

is divided by 11.

We know that 210 ≡ 1 (mod 11), so we need to find 34
56

78
9

modulo 10. We

know that 34 ≡ 1 (mod 10), so 34
56

78
9

≡ 1 (mod 10), so 23
45

67
89

≡ 21 ≡ 2
(mod 11).

12. Solve:

(a) 21x ≡ 22 (mod 33)

21 and 33 are both divisible by 3, but 22 is not, so this has no solutions.

(b) 2x ≡ 6 (mod 21)

2 and 21 are coprime so this has a unique solution, which is x = 3.

Theoretical Questions

13. Let H be a subgroup of G. Show that NG(H) = {x ∈ G|xHx−1 = H} is a
subgroup of G, and contains H as a normal subgroup.

We first need to show that NG(H) is a subgroup.

• Let x, y ∈ NG(H). Now xyH(xy)−1 = xyHy−1x−1 = xHx−1 = H,
so xy ∈ NG(H).

• Let x ∈ NG(H). Then xHx−1 = H, so xH = Hx and so H =
x−1Hx. Therefore x−1 ∈ NG(H).

• Clearly e ∈ NG(H).

Next we need to show that H is a normal subgroup of NG(H), but this is
automatic by the definition of NG(H). Finally we need to show that H is
contained in NG(H). For h ∈ H, we clearly have hHh−1 = H, since H is
a subgroup of G.
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14. Show that the intersection of two subrings of a ring is a ring.

The characteristic of a field must be prime or 0. Let F be a field with 6
elements. The additive subgroup generated by 1 must have 1, 2, 3, or 6
elements. It can’t have 1 or 6 elements, since the characteristic of F is
prime. Suppose F has characteristic 3. Now all the non-zero elements can
be partitioned into pairs of the form {x, 2x}. However, there are 5 non-zero
elements, so this is not possible. Therefore, F must have characteristic 2.
However, the additive group of F is an abelian group with 6 elements, so
must be isomorphic to Z6, or Z2×Z3. However, either possibility involves
an element of order 3, but this contradicts characteristic 2.

15. Show that there is no field with exactly 6 elements.

The characteristic of a field must be prime or 0. Let F be a field with 6
elements. The additive subgroup generated by 1 must have 1, 2, 3, or 6
elements. It can’t have 1 or 6 elements, since the characteristic of F is
prime. Suppose F has characteristic 3. Now all the non-zero elements can
be partitioned into pairs of the form {x, 2x}. However, there are 5 non-zero
elements, so this is not possible. Therefore, F must have characteristic 2.
However, the additive group of F is an abelian group with 6 elements, so
must be isomorphic to Z6, or Z2×Z3. However, either possibility involves
an element of order 3, but this contradicts characteristic 2.

16. Prove that addition and multiplication are well defined in the field of quo-
tients of an integral domain.

Recall that addition and multiplication are defined by [(a, b)] + [(c, d)] =
[(ad + bc, bd)] and [(a, b)][(c, d)] = [(ac, bd)] respectively. Showing that
these are well-defined means showing that the pairs (ad + bc, bd) and
(ac, bd) are valid pairs in the field of quotients (recall that the field of
quotients consists of equivalence classes of pairs (x, y) with y 6= 0, so
this just means showing that bd 6= 0) and that the answer doesn’t de-
pend on the choice of representatives of the equivalence classes. That
is, we need to show that if (a′, b′) ∼ (a, b) and (c′, d′) ∼ (c, d), then
(ad + bc, bd) ∼ (a′d′ + b′c′, b′d′) and (ac, bd) ∼ (a′c′, b′d′). For showing
that bd 6= 0, since R is an integral domain, and we have that b 6= 0 and
d 6= 0, we must have bd 6= 0.

Recall that (a, b) ∼ (a′, b′) if and only if ab′ = a′b, so given that

ab′ = a′b

cd′ = c′d

We need to show

(ad+ bc)(b′d′) = (a′d′ + b′c′)(bd)

acb′d′ = a′c′bd
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The second of these is easy — acb′d′ = ab′cd′ = a′bcd′ = a′bc′d = a′c′bd.
For the first, we have that adb′d′ = ab′dd′ = a′bdd′ = a′d′bd, and bcb′d′ =
bb′cd′ = bb′c′d = b′c′bd, and adding these gives the required equation.

17. State and prove the factor theorem for the polynomial ring over a field.

Theorem 1 (Factor Theorem). For a field F , and a polynomial f ∈ F [x],
an element α ∈ F is a zero of f if and only if x− α is a factor of f .

Proof. Let α be a zero of f . By the division algorithm, we have f(x) =
(x − α)q(x) + r(x), where the degree of r is less than 1 (the degree of
(x − α)). This means that r is a constant polynomial of the form c for
some c ∈ F , so we have f(x) = (x − α)q(x) + c. Now applying the
evaluation homomorphism φα, we get φα(f) = φα(x − α)φα(q) + φα(c).
Since α is a zero of f , we have that φα(f) = 0, and clearly, φα(x−α) = 0,
so this equation gives that c = φα(c) = 0. That is f(x) = (x− α)q(x), so
x− α is a factor of f .

Conversely, suppose (x − α) is a factor of f . Then we have f(x) = (x −
α)g(x) for some g ∈ F [x]. Applying φα gives φα(f) = 0φα(g) = 0.
Therefore α is a zero of f .

18. Let G be a group of order pq for distinct odd primes p and q with p < q.
Show that G contains an element of order p. [Hint: show that otherwise
all elements have order q, and in that case, consider the cyclic subgroups.]

The order of an element divides the order of the group, so the only possible
orders of elements of G are 1, p, q and pq. The only element of order 1 is
the identity. If x is an element of order pq, then xq is of order p. Therefore,
if G does not contain an element of order p, then all non-identity elements
are of order q. Now the cyclic groups generated by each element must
either be equal, or have only the identity in common, any non-identity
element in a cyclic group of prime order generates the group, so if two
cyclic supgroups H and K of G have an element x 6= e in common, then
they also both contain 〈x〉 = H = K, so they are the same subgroup.
Therefore, the non-identity elements of G are a disjoint union of the non-
identity elements in these cyclic subgroups. Each cyclic subgroup has
q − 1 elements, so the total number of non-identity elements in G (which
is pq − 1) is divisible by q − 1. However, subtracting from p(q − 1), this
would give that p(q− 1)− (pq− 1) = p− 1 is divisible by q− 1. However,
since p < q, we have that p− 1 < q − 1, so it is not divisible by q − 1.

19. (a) Show that a polynomial of degree n in F [x] for a field F can have at
most n zeros.

Proof by induction. It is clear that a non-zero polynomial of degree 0 has
no zeros.

Now suppose the result is true for n− 1. Let f ∈ F [x] be a polynomial of
degree n. If f has no zeros, then we are done. Otherwise, suppose α is a
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zero of f . By the factor theorem, we have f(x) = (x− α)q(x) for some q
of degree n− 1. Now since F is a field, and therefore an integral domain,
any zero of f must either be a zero of x − α, or a zero of q. Clearly, the
only zero of x − α is α, and by the induction hypothesis, q has at most
n− 1 zeros, so the most zeros f can have is 1 + (n− 1) = n as required.

(b) Deduce that the multiplicative group of non-zero elements in a finite
field is cyclic. (Recall the classification theorem for finitely generated
abelian groups.)

Let F be a finite field with q elements. The multiplicative group of non-
zero elements is a finite (and therefore finitely generated) abelian group, so
by the classification of finitely generated abelian groups, it is isomorphic to
Zp1n1 × · · · ×Zpknk , for primes p1, . . . , pk and positive integers n1, . . . , nk.
Now let m be the least common multiple of the pi

ni . Any element of any
Zpini has order dividing m, so every element of Zp1n1 × · · · × Zpknk has
order dividing m. This means that any x ∈ F \ {0} satisfies xm − 1 = 0.
That is, the polynomial xm − 1 has q − 1 zeros in F . Therefore, we must
have m > q− 1 = p1

n1 · · · pknk . However, if the least common multiple of
the pi

ni is also their product (it clearly can’t be larger than their product),
then they must be coprime, i.e. the pi must all be distinct. In this case,
the product Zp1n1 × · · · × Zpknk is cyclic of order m, as required.
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