MATH 3030, Abstract Algebra FALL 2012
 Toby Kenney
 Homework Sheet 10
 Model Solutions

Basic Questions

1. Which of the following are ideals?
(i) The set of all polynomials whose constant term is 0 in $\mathbb{Q}[x]$.

Let f and g be polynomials in $\mathbb{Q}[x]$ with constant terms 0 . Clearly the constant term in $f+g$ is also 0 . Let h be any polynomial in $\mathbb{Q}[x]$. Clearly the constant term of $f h$ is also 0 , so this is an ideal. (It is the ideal generated by x.)
(ii) The set of all polynomials $a_{0}+a_{1} x+a_{2} x^{2}+\cdots+a_{n} x^{n}$ in $\mathbb{Z}[x]$ where a_{1} is even.
This is not an ideal. It is a subring, but for example, $f(x)=2 x+1$ is in the set, and if $g(x)=x$, then the product $f g(x)=2 x^{2}+x$ is not in the set.
(iii) The set of pairs of the form $(0, b) \in \mathbb{Z} \times \mathbb{Z}$.

This is an ideal. If we add two such pairs $(0, b)$ and $\left(0, b^{\prime}\right)$, we get another such pair $\left(0, b+b^{\prime}\right)$. If (x, y) is any pair in $\mathbb{Z} \times \mathbb{Z}$, then $(x, y)(0, b)=(0, b y)$ which is in the ideal.
2. Which of the ideals in $Q .1$ are
(a) prime?

Both ideals (i) and (iii) are prime. The constant term of a product of polynomials is the product of their constant terms, so if it is zero, then one of the constant terms must be zero (since \mathbb{Q} is an integral domain).
In (iii), if we have $(k, l)(m, n)=(0, b)$, then we must have $k m=0$, so that either $k=0$ or $m=0$.
(b) maximal?

The ideal I in (i) is maximal, since if J is a larger ideal, we can let $f(x)=$ $a_{0}+a_{1} x+\cdots+a_{n} x^{n} \in J \backslash I$, so that $a_{0} \neq 0$. Now $g(x)=a_{1} x+\cdots+a_{n} x^{n}$ is in I, so is also in J. Therefore, $(g-f)(x)=a_{0}$ is in J. Since \mathbb{Q} is a field, this means that any constant polynomial is in J, and so all polynomials are in J. (The quotient of $\mathbb{Q}[x]$ by I is isomorphic to \mathbb{Q}.)
The ideal in (iii) is not maximal, since it is contained in the ideal of pairs of the form $(0,2 b)$. (The quotient of $\mathbb{Z} \times \mathbb{Z}$ by this ideal is isomorphic to Z.)
3. What are the maximal ideals of \mathbb{Z}_{24} ?

The ideals of \mathbb{Z}_{24} are sets of all multiples of n for elements n that divide 24. The maximal ideals correspond to the n that are prime, namely $n=2$ and $n=3$. That is the maximal ideals are $\left\{2 x \mid x \in \mathbb{Z}_{24}\right\}$ and $\left\{3 x \mid x \in \mathbb{Z}_{24}\right\}$.
4. Describe all ring homomorphisms from \mathbb{Z} to \mathbb{Z}_{18}.

A ring homomorphism f from \mathbb{Z} to \mathbb{Z}_{18} is entirely determined by $f(1)$. Since $1^{2}=1$, we must have $f(1)^{2}=f(1)$, so $f(1)$ must be a solution to $x^{2}-x=0$. The solutions to this in \mathbb{Z}_{18} are $0,1,9$ and 10 , so the homomorphisms from \mathbb{Z} to \mathbb{Z}_{18} are given by $f(1)=0$ (the trivial homomorphism), $f(1)=1, f(1)=9$ and $f(1)=10$.
5. Let $R=\mathbb{Z}_{4} \times \mathbb{Z}_{2}$. Let I be the ideal of R generated by $(2,1)$. What is the ring R / I ?
The ideal generated by $(2,1)$ consists of all pairs $(a, b) \in \mathbb{Z}_{4} \times \mathbb{Z}_{2}$ such that a is even. This ideal has 4 elements, while R has 8 , so the factor ring has 2 elements, so it must be isomorphic to \mathbb{Z}_{2}.

Theoretical Questions

6. Let $\phi: R \longrightarrow S$ be a ring homomorphism.
(a) Show that for an ideal I in R, the image $\phi(I)$ is an ideal in the image $\phi(R)$. Give an example to show that it need not be an ideal in S.
We already know that the image $\phi(I)$ is a subring of $\phi(R)$, so we just need to check that it is closed under multiplication by arbitrary elements of $\phi(R)$. Let $x \in \phi(I)$ and let $y \in \phi(R)$. We have that $x=\phi(a)$ for some $a \in I$ and $y=\phi(b)$ for some $b \in R$. Therefore we have that $x y=\phi(a) \phi(b)=\phi(a b)$. However, since I is an ideal in R, we know that $a b \in I$, so that $\phi(a b) \in \phi(I)$ as required. The argument that $y x \in \phi(I)$ is similar. Finally, $-x=\phi(-a) \in \phi(I)$.
(b) Show that for an ideal J in S, the inverse image $\phi^{-1}(J)=\{x \in$ $R \mid \phi(x) \in J\}$ is an ideal in R.
Let $x, y \in \phi^{-1}(J)$, and $z \in R$. We have that $\phi(x+y)=\phi(x)+\phi(y) \in J$, so $x+y \in \phi^{-1}(J)$, and $\phi(-x)=-\phi(x) \in J$, so $-x \in \phi^{-1}(J)$. We also have that $\phi(x z)=\phi(x) \phi(z) \in J$, so $x z \in \phi^{-1}(J)$. Similarly, $z x \in \phi^{-1}(J)$. Therefore $\phi^{-1}(J)$ is an ideal in R.
7. Show that the intersection of a set of ideals in a ring R is another ideal in R.
Let I_{i} be a set of ideals in R, and let J be their intersection. For $x, y \in J$, and $z \in R$, we have that for any $i, x \in I_{i}$ and $y \in I_{i}$, so that $-x, x+y$, $x z$ and $z x$ are all in I_{i}. Therefore, $-x, x+y, x z$ and $z x$ are all in J, so J is an ideal.
8. Show that the composite of two ring homomorphisms is a ring homomorphism.
Let $f: R \longrightarrow S$ and $g: S \longrightarrow T$ be two ring homomorphisms. We need to show that the composite $g f: R \longrightarrow T$ is a ring homomorphism. That is, we need to show that for any $x, y \in R, g f(x+y)=g f(x)+g f(y)$ and $g f(x y)=g f(x) g f(y)$. Now we have $g f(x+y)=g(f(x)+f(y))=$ $g f(x)+g f(y)$ and $g f(x y)=g(f(x) f(y))=g f(x) g f(y)$.
9. For a field F, show that any non-trivial proper prime ideal of $F[x]$ is maximal.
Let I be a nontrivial prime ideal of $F[x]$. Since I is a principal ideal generated by f for some $f \in F[x]$. We know that I is maximal if and only if f is irreducible. We need to show that if I is prime, then f is irreducible. However, if I is prime, then if f factors as $f=g h$, we must have $g \in I$ or $h \in I$. Since f generates I, this means that $g=f k$ or $h=f k$. This forces g or h to be constant polynomials, so f is irreducible.

Bonus Questions

10. For ideals I and J of a ring R, show that $I+J=\{x+y \mid x \in I, y \in J\}$ is also an ideal of R.
Let $a, b \in I+J$ and let $c \in R$. We have that $a=a_{I}+a_{J}$ and $b=b_{I}+b_{J}$ for some $a_{I}, b_{I} \in I$ and $a_{J}, b_{J} \in J$. Therefore, we have $a+b=a_{I}+a_{J}+$ $b_{I}+b_{J}=\left(a_{I}+b_{I}\right)+\left(a_{J}+b_{J}\right) \in I+J$. Also, $-a=-a_{I}-a_{J} \in I+J$ and $c a=c\left(a_{I}+a_{J}\right)=c a_{I}+c a_{J} \in I+J$ and $a c=\left(a_{I}+a_{J}\right) c=a_{I} c+a_{J} c \in I+J$, so $I+J$ is an ideal.
