MATH 3030, Abstract Algebra FALL 2012 Toby Kenney Homework Sheet 11 Model Solutions

Basic Questions

1. Calculate the dimension of $Q[\sqrt[5]{7}]$ as a vector space over Q.

A basis for this vector space is $\{1, \sqrt[5]{7}, \sqrt[5]{7^2}, \sqrt[5]{7^3}, \sqrt[5]{7^4}\}$, so the dimension is 5.

2. Give a basis of $Q[\frac{1}{2} + \frac{\sqrt{3}}{2}i]$ over Q.

One basis is $\{1, \sqrt{3}i\}$.

3. What is $\operatorname{Irr}(\sqrt{3+\sqrt[3]{3}},\mathbb{Q})$?

Let $t = \sqrt{3 + \sqrt[3]{3}}$. Let $s = t^2 = 3 + \sqrt[3]{3}$. We get that $(s-3)^3 = 3$, so that $(s-3)^3 - 3 = 0$. So s is a zero of $x^3 - 9x^2 + 27x - 30$, and t is a zero of $x^6 - 9x^4 + 27x^2 - 30$. This is irreducible over \mathbb{Z} by Eisenstein's criterion with p = 3, and therefore irreducible over \mathbb{Q} . Therefore, this polynomial is $\operatorname{Irr}(\sqrt{3 + \sqrt[3]{3}}, \mathbb{Q})$.

4. The polynomial $f(x) = x^2 + 2x + 2$ is irreducible over \mathbb{Z}_3 . Let α be a zero of f, and factorise f over $\mathbb{Z}_3(\alpha)$. [Hint: use long division.]

We know that $(x - \alpha)$ is a factor of f in $\mathbb{Z}_3(\alpha)$. Applying long division, we get $f(x) = (x - \alpha)(x + \alpha + 2)$. [So the other zero of f is $1 + 2\alpha$.

5. Let α be a zero of $f(x) = x^3 + x + 1$ over \mathbb{Z}_2 . Compute the multiplication table of $\mathbb{Z}_2(\alpha)$. [Hint: $\mathbb{Z}_2(\alpha)$ has 8 elements: 0, 1, α , $\alpha + 1$, α^2 , $\alpha^2 + 1$, $\alpha^2 + \alpha$, and $\alpha^2 + \alpha + 1$.]

	0	1	α	$\alpha + 1$	α^2	$\alpha^2 + 1$	$\alpha^2 + \alpha$	$\alpha^2 + \alpha + 1$
0	0	0	0	0	0	0	0	0
1	0	1	α	$\alpha + 1$	α^2	$\alpha^2 + 1$	$\alpha^2 + \alpha$	$\alpha^2 + \alpha + 1$
α	0	α	α^2	$\alpha^2 + \alpha$	$\alpha + 1$	1	$\alpha^2 + \alpha + 1$	$\alpha^2 + 1$
$\alpha + 1$	0	$\alpha + 1$	$\alpha^2 + \alpha$	$\alpha^2 + 1$	$\alpha^2 + \alpha + 1$	α^2	1	α
α^2	0	α^2	$\alpha + 1$	$\alpha^2 + \alpha + 1$	$\alpha^2 + \alpha$	α	$\alpha^2 + 1$	1
$\alpha^2 + 1$	0	$\alpha^2 + 1$	1	α^2	α	$\alpha^2 + \alpha + 1$	$\alpha + 1$	$\alpha^2 + \alpha$
$\alpha^2 + \alpha$	0	$\alpha^2 + \alpha$	$\alpha^2 + \alpha + 1$	1	$\alpha^2 + 1$	$\alpha + 1$	α	α^2
$\alpha^2 + \alpha + 1$	0	$\alpha^2 + \alpha + 1$	$\alpha^2 + 1$	α	1	$\alpha^2 + \alpha$	α^2	$\alpha + 1$

Theoretical Questions

- 5. Let V be a vector space of dimension n over a field F.
 - (a) Show that if v_1, \ldots, v_n is a linearly independent set, then it is a basis.

We know that any linearly independent set extends to a basis. Therefore, we can extend v_1, \ldots, v_n to a basis $\{v_1, \ldots, v_n, w_1, \ldots, w_k\}$. Since V has dimension n, this basis has cardinality n, so we must have k = 0, i.e. $\{v_1, \ldots, v_n\}$ is a basis.

(b) Show that if v_1, \ldots, v_n is a spanning set, then it is a basis.

If $\{v_1, \ldots, v_n\}$ is a linearly independent set, then it must be a basis. Suppose it is not linearly independent, then we can take a maximal linearly independent subset $\{v_{i_1}, \ldots, v_{i_k}\}$. We claim that this is a spanning set, and therefore, a basis. Let $x \in V$ be any vector. We know that x is a linear combination $\lambda_1 v_1 + \cdots + \lambda_n v_n$. Now for any $v_j \notin \{v_{i_1}, \ldots, v_{i_k}\}$, we know that $\{v_j, v_{i_1}, \ldots, v_{i_k}\}$ is not linearly independent (by maximality). This means that we have some $\alpha v_j + \beta_1 v_{i_1} + \cdots + \beta_k v_{i_k} = 0$. If $\alpha = 0$, then we have a contradiction to the assumption that $\{v_{i_1}, \ldots, v_{i_k}\}$ is linearly independent. Therefore $\alpha \neq 0$, and since F is a field, this means that α has an inverse. We therefore get $v_j = -\alpha^{-1}\beta_1 v_{i_1} - \cdots - \alpha^{-1}\beta_k v_{i_k}$, so v_j is a linear combination of $\{v_{i_1}, \ldots, v_{i_k}\}$. Therefore, replacing each v_j by this linear combination, we can express x as a linear combination of $\{v_{i_1}, \ldots, v_{i_k}\}$ is a basis, so k = n. Therefore, $\{v_1, \ldots, v_n\}$ is a basis.

 If F is a finite field with q elements, and V is a vector space of dimension d over F, show that V has q^d elements.

Let $\{v_1, \ldots, v_d\}$ be a basis for V over F. The elements of F are uniquely represented in the form $\lambda_1 v_1 + \cdots + \lambda_d v_d$, where each $\lambda_i \in F$, so there are q possibilities for each λ_i . Therefore the total number of elements is q^d .

7. Show that if E is a finite extension field of F, and if [E : F] is prime, then E is a simple extension of F. [Hint: in fact $E = F(\alpha)$ for any α in $E \setminus F$.]

Let $\alpha \in E \setminus F$. We know that $[E : F] = [E : F(\alpha)][F(\alpha) : F]$. Since [E : F] is prime, one of $[E : F(\alpha)]$ and $[F(\alpha) : F]$ must be 1. Since $\alpha \notin F$, we can't have $[F(\alpha) : F] = 1$, so we must have $[E : F(\alpha)] = 1$. This means that $E = F(\alpha)$ is a simple extension of F.

8. Let F be a field, let $F(\alpha)$ be algebraic over F, and let $[F(\alpha) : F]$ be odd. Show that $F(\alpha^2) = F(\alpha)$.

Since $\alpha^2 \in F(\alpha)$, we know that $F(\alpha^2)$ is a subfield of $F(\alpha)$. Furthermore, it is easy to see that $\{1, \alpha\}$ is a spanning set for $F(\alpha)$ over $F(\alpha^2)$, so $[F(\alpha) : F(\alpha^2)] \leq 2$. Since $[F(\alpha) : F] = [F(\alpha) : F(\alpha^2)][F(\alpha^2) : F]$ is odd, so is $[F(\alpha) : F(\alpha)]$, so it must be 1, i.e. $F(\alpha) = F(\alpha^2)$.