MATH 3030, Abstract Algebra
 FALL 2012
 Toby Kenney
 Homework Sheet 11
 Model Solutions

Basic Questions

1. Calculate the dimension of $Q[\sqrt[5]{7}]$ as a vector space over Q.

A basis for this vector space is $\left\{1, \sqrt[5]{7}, \sqrt[5]{7^{2}}, \sqrt[5]{7^{3}}, \sqrt[5]{7^{4}}\right\}$, so the dimension is 5 .
2. Give a basis of $Q\left[\frac{1}{2}+\frac{\sqrt{3}}{2} i\right]$ over Q.

One basis is $\{1, \sqrt{3} i\}$.
3. What is $\operatorname{Irr}(\sqrt{3+\sqrt[3]{3}}, \mathbb{Q})$?

Let $t=\sqrt{3+\sqrt[3]{3}}$. Let $s=t^{2}=3+\sqrt[3]{3}$. We get that $(s-3)^{3}=3$, so that $(s-3)^{3}-3=0$. So s is a zero of $x^{3}-9 x^{2}+27 x-30$, and t is a zero of $x^{6}-9 x^{4}+27 x^{2}-30$. This is irreducible over \mathbb{Z} by Eisenstein's criterion with $p=3$, and therefore irreducible over \mathbb{Q}. Therefore, this polynomial is $\operatorname{Irr}(\sqrt{3+\sqrt[3]{3}}, \mathbb{Q})$.
4. The polynomial $f(x)=x^{2}+2 x+2$ is irreducible over \mathbb{Z}_{3}. Let α be a zero of f, and factorise f over $\mathbb{Z}_{3}(\alpha)$. [Hint: use long division.]
We know that $(x-\alpha)$ is a factor of f in $\mathbb{Z}_{3}(\alpha)$. Applying long division, we get $f(x)=(x-\alpha)(x+\alpha+2)$. [So the other zero of f is $1+2 \alpha$.
5. Let α be a zero of $f(x)=x^{3}+x+1$ over \mathbb{Z}_{2}. Compute the multiplication table of $\mathbb{Z}_{2}(\alpha)$. [Hint: $\mathbb{Z}_{2}(\alpha)$ has 8 elements: $0,1, \alpha, \alpha+1, \alpha^{2}, \alpha^{2}+1$, $\alpha^{2}+\alpha$, and $\alpha^{2}+\alpha+1$.]

	0	1	α	$\alpha+1$	α^{2}	$\alpha^{2}+1$	$\alpha^{2}+\alpha$	$\alpha^{2}+\alpha+1$
0	0	0	0	0	0	0	0	0
1	0	1	α	$\alpha+1$	α^{2}	$\alpha^{2}+1$	$\alpha^{2}+\alpha$	$\alpha^{2}+\alpha+1$
α	0	α	α^{2}	$\alpha^{2}+\alpha$	$\alpha+1$	1	$\alpha^{2}+\alpha+1$	$\alpha^{2}+1$
$\alpha+1$	0	$\alpha+1$	$\alpha^{2}+\alpha$	$\alpha^{2}+1$	$\alpha^{2}+\alpha+1$	α^{2}	1	α
α^{2}	0	α^{2}	$\alpha+1$	$\alpha^{2}+\alpha+1$	$\alpha^{2}+\alpha$	α	$\alpha^{2}+1$	1
$\alpha^{2}+1$	0	$\alpha^{2}+1$	1	α^{2}	α	$\alpha^{2}+\alpha+1$	$\alpha+1$	$\alpha^{2}+\alpha$
$\alpha^{2}+\alpha$	0	$\alpha^{2}+\alpha$	$\alpha^{2}+\alpha+1$	1	$\alpha^{2}+1$	$\alpha+1$	α	α^{2}
$\alpha^{2}+\alpha+1$	0	$\alpha^{2}+\alpha+1$	$\alpha^{2}+1$	α	1	$\alpha^{2}+\alpha$	α^{2}	$\alpha+1$

Theoretical Questions

5. Let V be a vector space of dimension n over a field F.
(a) Show that if v_{1}, \ldots, v_{n} is a linearly independent set, then it is a basis.

We know that any linearly independent set extends to a basis. Therefore, we can extend v_{1}, \ldots, v_{n} to a basis $\left\{v_{1}, \ldots, v_{n}, w_{1}, \ldots, w_{k}\right\}$. Since V has dimension n, this basis has cardinality n, so we must have $k=0$, i.e. $\left\{v_{1}, \ldots, v_{n}\right\}$ is a basis.
(b) Show that if v_{1}, \ldots, v_{n} is a spanning set, then it is a basis.

If $\left\{v_{1}, \ldots, v_{n}\right\}$ is a linearly independent set, then it must be a basis. Suppose it is not linearly independent, then we can take a maximal linearly independent subset $\left\{v_{i_{1}}, \ldots, v_{i_{k}}\right\}$. We claim that this is a spanning set, and therefore, a basis. Let $x \in V$ be any vector. We know that x is a linear combination $\lambda_{1} v_{1}+\cdots+\lambda_{n} v_{n}$. Now for any $v_{j} \notin\left\{v_{i_{1}}, \ldots, v_{i_{k}}\right\}$, we know that $\left\{v_{j}, v_{i_{1}}, \ldots, v_{i_{k}}\right\}$ is not linearly independent (by maximality). This means that we have some $\alpha v_{j}+\beta_{1} v_{i_{1}}+\cdots+\beta_{k} v_{i_{k}}=0$. If $\alpha=0$, then we have a contradiction to the assumption that $\left\{v_{i_{1}}, \ldots, v_{i_{k}}\right\}$ is linearly independent. Therefore $\alpha \neq 0$, and since F is a field, this means that α has an inverse. We therefore get $v_{j}=-\alpha^{-1} \beta_{1} v_{i_{1}}-\cdots-\alpha^{-1} \beta_{k} v_{i_{k}}$, so v_{j} is a linear combination of $\left\{v_{i_{1}}, \ldots, v_{i_{k}}\right\}$. Therefore, replacing each v_{j} by this linear combination, we can express x as a linear combination of $\left\{v_{i_{1}}, \ldots, v_{i_{k}}\right\}$. This proves that $\left\{v_{i_{1}}, \ldots, v_{i_{k}}\right\}$ is a basis, so $k=n$. Therefore, $\left\{v_{1}, \ldots, v_{n}\right\}$ is a basis.
6. If F is a finite field with q elements, and V is a vector space of dimension d over F, show that V has q^{d} elements.
Let $\left\{v_{1}, \ldots, v_{d}\right\}$ be a basis for V over F. The elements of F are uniquely represented in the form $\lambda_{1} v_{1}+\cdots+\lambda_{d} v_{d}$, where each $\lambda_{i} \in F$, so there are q possibilities for each λ_{i}. Therefore the total number of elements is q^{d}.
7. Show that if E is a finite extension field of F, and if $[E: F]$ is prime, then E is a simple extension of F. [Hint: in fact $E=F(\alpha)$ for any α in $E \backslash F$.]
Let $\alpha \in E \backslash F$. We know that $[E: F]=[E: F(\alpha)][F(\alpha): F]$. Since $[E: F]$ is prime, one of $[E: F(\alpha)]$ and $[F(\alpha): F]$ must be 1 . Since $\alpha \notin F$, we can't have $[F(\alpha): F]=1$, so we must have $[E: F(\alpha)]=1$. This means that $E=F(\alpha)$ is a simple extension of F.
8. Let F be a field, let $F(\alpha)$ be algebraic over F, and let $[F(\alpha): F]$ be odd. Show that $F\left(\alpha^{2}\right)=F(\alpha)$.
Since $\alpha^{2} \in F(\alpha)$, we know that $F\left(\alpha^{2}\right)$ is a subfield of $F(\alpha)$. Furthermore, it is easy to see that $\{1, \alpha\}$ is a spanning set for $F(\alpha)$ over $F\left(\alpha^{2}\right)$, so $\left[F(\alpha): F\left(\alpha^{2}\right)\right] \leqslant 2$. Since $[F(\alpha): F]=\left[F(\alpha): F\left(\alpha^{2}\right)\right]\left[F\left(\alpha^{2}\right): F\right]$ is odd, so is $[F(\alpha): F(\alpha)]$, so it must be 1, i.e. $F(\alpha)=F\left(\alpha^{2}\right)$.

