MATH 3030, Abstract Algebra FALL 2012

Toby Kenney
Homework Sheet 12
Model Solutions

Basic Questions

1. Show that it is not possible to trisect an angle of $\cos ^{-1}(0.6)$. [An angle of $\cos ^{-1}(0.6)$ is constructable.]
Trisecting an angle of $\cos ^{-1}(0.6)$ means constructing a line segment of length $\cos \left(\frac{\cos ^{-1}(0.6)}{3}\right)$. However, we know that $\cos (3 x)=4 \cos ^{3} x-3 \cos x$, so $\cos \left(\frac{\cos ^{-1}(0.6)}{3}\right)$ is a zero of $4 x^{3}-3 x-0.6$, or equivalently, a zero of $20 x^{3}-15 x-3$, which is irreducible by Eisenstein's criterion for $p=3$. Therefore, this length has degree 3 over \mathbb{Q}, and so is not constructible, since 3 is not a power of 2 .
2. Show that $x^{3}+2 x^{2}+4 x+3$ has distinct zeros in the algebraic closure of \mathbb{Z}_{5}.
By checking all values, we see that $x^{3}+2 x^{2}+4 x+3$ has no zeros in \mathbb{Z}_{5}. Let α be a zero in the algebraic closure of \mathbb{Z}_{5}. We factorise in the algebraic closure of \mathbb{Z}_{5} using long division. $x^{3}+2 x^{2}+4 x+3=(x-\alpha)\left(x^{2}+(\alpha+\right.$ 2) $\left.x+\left(\alpha^{2}+2 \alpha+4\right)\right)$. To show that α is not a repeated zero, we need to show that $\phi_{\alpha}\left(x^{2}+(\alpha+2) x+\left(\alpha^{2}+2 \alpha+4\right)\right) \neq 0$. However, we have that $\phi_{\alpha}\left(x^{2}+(\alpha+2) x+\left(\alpha^{2}+2 \alpha+4\right)\right)=3 \alpha^{2}+4 \alpha+4$. Clearly, this is not zero, because if it were, then α would be a zero of $3 x^{2}+4 x+3$, so we would not have that $x^{3}+2 x^{2}+4 x+3$ is the smallest-degree irreducible polynomial of which α is a zero.
3. How many primitive 15 th roots of unity are there in $G F(16)$?

The multiplicative group of $\mathrm{GF}(16)$ is cyclic of order 15 . The primitive roots of unity are the generators of this group. There are $\phi(15)=8$ generators, so $\mathrm{GF}(16)$ has 8 primitive 15 th roots of unity.
4. Find a basis for the field extension $\mathbb{Q}(\sqrt{2}, \sqrt[3]{3})$ over \mathbb{Q}.

One such basis is $\{1, \sqrt{2}, \sqrt[3]{3}, \sqrt{2} \sqrt[3]{3}, \sqrt[3]{9}, \sqrt{2} \sqrt[3]{9}\}$.

Theoretical Questions

5. Let E be algebraically closed, and let F be a subfield of E. Show that the algebraic closure of F in E is also algebraically closed. [So for example,
the field of algebraic numbers (that is, complex numbers that are algebraic over \mathbb{Q}) is algebraically closed.
Let $f \in F[x]$. We need to show that the algebraic closure of F in E contains a zero of f. However, since E is algebraically closed and F is a subfield of E, we know that f is a polynomial in $E[x]$, so, since E is algebraically closed, there is a zero of f in E. However, any zero of f must be algebraic over F, by definition. Therefore, this zero of f must be in the algebraic closure of F in E.
6. Let F be a field. Let α be transcendental over F. Show that any element of $F(\alpha)$ is either in F or transcendental over F.
Let $\beta \in F(\alpha)$. Then β is a rational function in α. Suppose $\beta=\frac{f(\alpha)}{g(\alpha)}$, for polynomials $f, g \in F[x]$. Now suppose β is algebraic over F, so β is a zero of some polynomial $h \in F[x]$. Suppose h has degree n. Then we see that $g(\alpha)^{n} h(\beta)$ is a polynomial k in α. However, since $h(\beta)=0$, we get that $k(\alpha)=0$. Since α is transcendental over F, k must be the zero polynomial. This can only happen if f and g are constant polynomials, in which case, we have that $\beta \in F$.
7. Is it possible to duplicate a cube if we are given a unit line segment and a line segment of length $\sqrt[3]{3}$?
This is still impossible, because $[\mathbb{Q}(\sqrt[3]{3}, \sqrt[3]{2}): \mathbb{Q}(\sqrt[3]{3})]=3$ is not a power of 2 .
8. Show that every irreducible polynomial in $\mathbb{Z}_{p}[x]$ divides $x^{p^{n}}-x$ for some n.

Let f be an irreducible polynomial in $\mathbb{Z}_{p}[x]$. Let E be an extension field of \mathbb{Z}_{p} containing a zero α of f, and such that $\left[E: \mathbb{Z}_{p}\right]$ is finite. (Such a field exists because adjoining a zero of f only requires an extension field of finite degree.) Now since E is finite of order p^{n} for some n, so its multiplicative group of non-zero elements has order $p^{n}-1$. Therefore, every non-zero element of E has order a factor of $p^{n}-1$ in this multiplicative group. This means that every non-zero element of E is a zero of $x^{p^{n}-1}-1$. In particular α is a zero of $x^{p^{n}}-x$. Let I be the ideal in $\mathbb{Z}_{p}[x]$ generated by f and $x^{p^{n}}-x$. Since $(x-\alpha)$ is a factor of both f and $x^{p^{n}}-x$ in $E[x]$, the ideal generated by them in $E[x]$ must not contain 1 . Therefore, I must not contain 1 , since I is contained in this ideal. Since I contains (f), and (f) is a maximal ideal, we must have $I=(f)$. Therefore, we have $x^{p^{n}}-x \in(f)$, so f must divide $x^{p^{n}}-x$.
9. Show that a finite field of p^{n} elements has exactly one subfield of p^{m} elements for any divisor m of n.

Let F be a field of p^{n} elements. Consider the set $\left\{z \in F \mid z\right.$ is contained in a subfield of F with p^{m} element To be in this set, z must be a zero of $x^{p^{m}}-x$. This polynomial has p^{m} zeros in F. Therefore, this set has at most p^{m} elements. If F had two
subfields of p^{m} elements, their unions would be contained in this set, and would have more than p^{m} elements, so F has at most one subfield of p^{m} elements.
Conversely, to show that F has a subfield of p^{m} elements, we know show that the zeros of $x^{p^{m}}-x$ in $\overline{\mathbb{Z}_{p}}$ form a field of p^{m} elements, so we just need to show that all these zeros are in F. We know that the multiplicative group of non-zero elements of F is cyclic. Let a be a generator. Now the elements of F are all of the form a^{i} for some i. An element a^{i} is a zero of $x^{p^{m}}-x$ if and only if $i p^{m} \equiv i\left(\bmod p^{n}-1\right)$, or equivalently $i\left(p^{m}-1\right) \equiv 0$ $\left(\bmod p^{n}-1\right)$. This happens only if i is divisible by $\frac{p^{n}-1}{p^{m}-1}$. There are $p^{m}-1$ such elements modulo $p^{n}-1$, so all $p^{m}-1$ non-zero elements of $\overline{\mathbb{Z}_{p}}$ that are zeros of $x^{p^{m}}-x$ are all in F. Furthermore, 0 is in F, so all zeros of $x^{p^{m}}-x$ are in F, and these form a subfield with p^{m} elements.

Bonus Questions

10. Let F_{q} be the finite field with q elements.
(a) Show that an irreducible polynomial of degree m in $F_{q}[X]$ divides $x^{q^{n}}-$ x if and only if m divides n.

Let f be an irreducible polynomial of degree m in $F_{q}[x]$. Let α be a zero of f. We know that $\left[F_{q}(\alpha): F_{q}\right]=m$. Let E be the extension field of zeros of $x^{q^{n}}-x$, so that $\left[E: F_{q}\right]=n$. If f divides $x^{q^{n}}-x$, then it $F_{q}(\alpha)$ must be a subfield of E, so we have $n=\left[E: F_{q}\right]=\left[E: F_{q}(\alpha)\right]\left[F_{q}(\alpha): F\right]$, which gives that m divides n.
Conversely, suppose that m divides n. Then $F_{q}(\alpha)$ is a field with q^{m} elements, all of which must be zeros of $x^{q^{m}}-x$, so the zeros of f are all zeros of $x^{q^{m}}-x$, which are also all zeros of $x^{q^{n}}-x$. Therefore, f and $x^{q^{n}}-x$ have a common factor in $F_{q}[x]$, so the ideal they generate is not the whole of $F_{q}[x]$. Therefore, since it contains the irreducible polynomial f, it must be the ideal generated by f. This means that f divides $x^{q^{n}}-x$.
(b) If $a_{n}(q)$ is the number of irreducible polynomials of degree n over F_{q}, show that

$$
\sum_{d \mid n} d a_{d}(q)=q^{n}
$$

We know that $x^{q^{n}}-1$ has no repeated zeros, so it is not divisible by the square of any polynomial in $F_{q}[x]$. Therefore, it must be the product of all irreducible monic polynomials of degrees dividing n in $F_{q}[x]$ (up to a constant multiple). The total degree of this product is

$$
\sum_{d \mid n} d a_{d}(q)
$$

and the degree of $x^{q^{n}}-x$ is q^{m}. Equal polynomials must have equal degrees, so we get

$$
\sum_{d \mid n} d a_{d}(q)=q^{n}
$$

(c) How many irreducible polynomials of degree 6 are there over \mathbb{Z}_{3}.

Using the formula from (b), we know there are 3 irreducible polynomials of degree 1 over \mathbb{Z}_{3}, so $a_{1}(3)=3$. This gives $3+2 a_{2}(3)=3^{2}$, giving $a_{2}(3)=3$. Similarly, $3+3 a_{3}(3)=3^{3}$, giving $a^{3}(3)=8$. Finally, we get $3+6+24+6 a_{6}(3)=3^{6}$, giving $a_{6}(3)=116$. Therefore, there are 116 irreducible polynomials of degree 6 over \mathbb{Z}_{3}.

