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Model Solutions

Basic Questions

1. Show that it is not possible to trisect an angle of cos−1(0.6). [An angle of
cos−1(0.6) is constructable.]

Trisecting an angle of cos−1(0.6) means constructing a line segment of

length cos
(

cos−1(0.6)
3

)
. However, we know that cos(3x) = 4 cos3 x−3 cosx,

so cos
(

cos−1(0.6)
3

)
is a zero of 4x3 − 3x − 0.6, or equivalently, a zero of

20x3 − 15x − 3, which is irreducible by Eisenstein’s criterion for p = 3.
Therefore, this length has degree 3 over Q, and so is not constructible,
since 3 is not a power of 2.

2. Show that x3 + 2x2 + 4x+ 3 has distinct zeros in the algebraic closure of
Z5.

By checking all values, we see that x3 + 2x2 + 4x+ 3 has no zeros in Z5.
Let α be a zero in the algebraic closure of Z5. We factorise in the algebraic
closure of Z5 using long division. x3 + 2x2 + 4x+ 3 = (x− α)(x2 + (α +
2)x + (α2 + 2α + 4)). To show that α is not a repeated zero, we need to
show that φα(x2 + (α+ 2)x+ (α2 + 2α+ 4)) 6= 0. However, we have that
φα(x2 + (α+ 2)x+ (α2 + 2α+ 4)) = 3α2 + 4α+ 4. Clearly, this is not zero,
because if it were, then α would be a zero of 3x2 +4x+3, so we would not
have that x3 + 2x2 + 4x+ 3 is the smallest-degree irreducible polynomial
of which α is a zero.

3. How many primitive 15th roots of unity are there in GF(16)?

The multiplicative group of GF(16) is cyclic of order 15. The primitive
roots of unity are the generators of this group. There are φ(15) = 8
generators, so GF(16) has 8 primitive 15th roots of unity.

4. Find a basis for the field extension Q(
√

2, 3
√

3) over Q.

One such basis is {1,
√

2, 3
√

3,
√

2 3
√

3, 3
√

9,
√

2 3
√

9}.

Theoretical Questions

5. Let E be algebraically closed, and let F be a subfield of E. Show that the
algebraic closure of F in E is also algebraically closed. [So for example,
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the field of algebraic numbers (that is, complex numbers that are algebraic
over Q) is algebraically closed.

Let f ∈ F [x]. We need to show that the algebraic closure of F in E
contains a zero of f . However, since E is algebraically closed and F is
a subfield of E, we know that f is a polynomial in E[x], so, since E is
algebraically closed, there is a zero of f in E. However, any zero of f must
be algebraic over F , by definition. Therefore, this zero of f must be in
the algebraic closure of F in E.

6. Let F be a field. Let α be transcendental over F . Show that any element
of F (α) is either in F or transcendental over F .

Let β ∈ F (α). Then β is a rational function in α. Suppose β = f(α)
g(α) ,

for polynomials f, g ∈ F [x]. Now suppose β is algebraic over F , so β is
a zero of some polynomial h ∈ F [x]. Suppose h has degree n. Then we
see that g(α)nh(β) is a polynomial k in α. However, since h(β) = 0, we
get that k(α) = 0. Since α is transcendental over F , k must be the zero
polynomial. This can only happen if f and g are constant polynomials, in
which case, we have that β ∈ F .

7. Is it possible to duplicate a cube if we are given a unit line segment and a
line segment of length 3

√
3?

This is still impossible, because [Q( 3
√

3, 3
√

2) : Q( 3
√

3)] = 3 is not a power
of 2.

8. Show that every irreducible polynomial in Zp[x] divides xp
n − x for some

n.

Let f be an irreducible polynomial in Zp[x]. Let E be an extension field of
Zp containing a zero α of f , and such that [E : Zp] is finite. (Such a field
exists because adjoining a zero of f only requires an extension field of finite
degree.) Now since E is finite of order pn for some n, so its multiplicative
group of non-zero elements has order pn − 1. Therefore, every non-zero
element of E has order a factor of pn − 1 in this multiplicative group.
This means that every non-zero element of E is a zero of xp

n−1 − 1. In
particular α is a zero of xp

n − x. Let I be the ideal in Zp[x] generated
by f and xp

n − x. Since (x − α) is a factor of both f and xp
n − x in

E[x], the ideal generated by them in E[x] must not contain 1. Therefore,
I must not contain 1, since I is contained in this ideal. Since I contains
(f), and (f) is a maximal ideal, we must have I = (f). Therefore, we have
xp

n − x ∈ (f), so f must divide xp
n − x.

9. Show that a finite field of pn elements has exactly one subfield of pm ele-
ments for any divisor m of n.

Let F be a field of pn elements. Consider the set {z ∈ F |z is contained in a subfield of F with pm elements}.
To be in this set, z must be a zero of xp

m − x. This polynomial has pm

zeros in F . Therefore, this set has at most pm elements. If F had two
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subfields of pm elements, their unions would be contained in this set, and
would have more than pm elements, so F has at most one subfield of pm

elements.

Conversely, to show that F has a subfield of pm elements, we know show
that the zeros of xp

m−x in Zp form a field of pm elements, so we just need
to show that all these zeros are in F . We know that the multiplicative
group of non-zero elements of F is cyclic. Let a be a generator. Now the
elements of F are all of the form ai for some i. An element ai is a zero of
xp

m −x if and only if ipm ≡ i (mod pn− 1), or equivalently i(pm− 1) ≡ 0

(mod pn−1). This happens only if i is divisible by pn−1
pm−1 . There are pm−1

such elements modulo pn − 1, so all pm − 1 non-zero elements of Zp that
are zeros of xp

m − x are all in F . Furthermore, 0 is in F , so all zeros of
xp

m − x are in F , and these form a subfield with pm elements.

Bonus Questions

10. Let Fq be the finite field with q elements.

(a) Show that an irreducible polynomial of degree m in Fq[X] divides xq
n−

x if and only if m divides n.

Let f be an irreducible polynomial of degree m in Fq[x]. Let α be a zero
of f . We know that [Fq(α) : Fq] = m. Let E be the extension field of
zeros of xq

n − x, so that [E : Fq] = n. If f divides xq
n − x, then it Fq(α)

must be a subfield of E, so we have n = [E : Fq] = [E : Fq(α)][Fq(α) : F ],
which gives that m divides n.

Conversely, suppose that m divides n. Then Fq(α) is a field with qm

elements, all of which must be zeros of xq
m − x, so the zeros of f are all

zeros of xq
m − x, which are also all zeros of xq

n − x. Therefore, f and
xq

n − x have a common factor in Fq[x], so the ideal they generate is not
the whole of Fq[x]. Therefore, since it contains the irreducible polynomial
f , it must be the ideal generated by f . This means that f divides xq

n−x.

(b) If an(q) is the number of irreducible polynomials of degree n over Fq,
show that ∑

d|n

dad(q) = qn

We know that xq
n − 1 has no repeated zeros, so it is not divisible by the

square of any polynomial in Fq[x]. Therefore, it must be the product of
all irreducible monic polynomials of degrees dividing n in Fq[x] (up to a
constant multiple). The total degree of this product is∑

d|n

dad(q)
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and the degree of xq
n − x is qm. Equal polynomials must have equal

degrees, so we get ∑
d|n

dad(q) = qn

(c) How many irreducible polynomials of degree 6 are there over Z3.

Using the formula from (b), we know there are 3 irreducible polynomials
of degree 1 over Z3, so a1(3) = 3. This gives 3 + 2a2(3) = 32, giving
a2(3) = 3. Similarly, 3 + 3a3(3) = 33, giving a3(3) = 8. Finally, we get
3 + 6 + 24 + 6a6(3) = 36, giving a6(3) = 116. Therefore, there are 116
irreducible polynomials of degree 6 over Z3.
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