MATH 3030, Abstract Algebra FALL 2012 Toby Kenney Homework Sheet 14 Model Solutions

Basic Questions

Which of the following pairs of numbers are conjugate over Q?
 (a) √2 and √6.

These are not conjugate, since $\operatorname{Irr}(\sqrt{2}.\mathbb{Q}) = x^2 - 2$, while $\operatorname{Irr}(\sqrt{6}.\mathbb{Q}) = x^2 - 6$.

(b) $1 + \sqrt{2}$ and $1 - \sqrt{2}$.

These are conjugate, since $\operatorname{Irr}(1 + \sqrt{2}.\mathbb{Q}) = x^2 - 2x - 1 = \operatorname{Irr}(1 - \sqrt{2}.\mathbb{Q}).$ (c) $\sqrt[4]{2}$ and $\sqrt{2}$.

These are not conjugate, since $\operatorname{Irr}(\sqrt{2}.\mathbb{Q}) = x^2 - 2$, while $\operatorname{Irr}(\sqrt[4]{2}.\mathbb{Q}) = x^4 - 2$.

2. In $\mathbb{Q}(\sqrt{2}+\sqrt{3})$, compute $\psi_{\sqrt{2}+\sqrt{3},\sqrt{2}-\sqrt{3}}(2+\sqrt{2}-\sqrt{6})$.

We have that $(\sqrt{2} + \sqrt{3})^3 = 11\sqrt{2} + 9\sqrt{3}$, so that $\frac{1}{2}(\sqrt{2} + \sqrt{3})^3 - \frac{9}{2}(\sqrt{2} + \sqrt{3})^3 = \sqrt{2}$, so that $\psi_{\sqrt{2}+\sqrt{3},\sqrt{2}-\sqrt{3}}(\sqrt{2}) = \frac{1}{2}(\sqrt{2} - \sqrt{3})^3 - \frac{9}{2}(\sqrt{2} - \sqrt{3}) = \sqrt{2}$. This means that $\psi_{\sqrt{2}+\sqrt{3},\sqrt{2}-\sqrt{3}}(\sqrt{3}) = \psi_{\sqrt{2}+\sqrt{3},\sqrt{2}-\sqrt{3}}(\sqrt{2} + \sqrt{3}) - \psi_{\sqrt{2}+\sqrt{3},\sqrt{2}-\sqrt{3}}(\sqrt{2}) = -\sqrt{3}$. This gives $\psi_{\sqrt{2}+\sqrt{3},\sqrt{2}-\sqrt{3}}(2 + \sqrt{2} - \sqrt{6}) = 2 + \sqrt{2} - (\sqrt{2} \times -\sqrt{3}) = 2 + \sqrt{2} + \sqrt{6}$.

3. In $\mathbb{Q}(\sqrt{2}+\sqrt{3})$, compute the fixed field of $\{\psi_{\sqrt{2}+\sqrt{3},-\sqrt{2}-\sqrt{3}}\}$.

We know that $\psi_{\sqrt{2}+\sqrt{3},-\sqrt{2}-\sqrt{3}}(\sqrt{2}) = -\sqrt{2}$ and $\psi_{\sqrt{2}+\sqrt{3},-\sqrt{2}-\sqrt{3}}(\sqrt{3}) = -\sqrt{3}$, and $\psi_{\sqrt{2}+\sqrt{3},-\sqrt{2}-\sqrt{3}}(\sqrt{6}) = \sqrt{6}$, and we know that $\mathbb{Q}(\sqrt{6})$ is fixed, but $\sqrt{3}$ is not. Since there are no extensions between $\mathbb{Q}(\sqrt{6})$ and $\mathbb{Q}(\sqrt{2}+\sqrt{3})$, the fixed field must be $\mathbb{Q}(\sqrt{6})$.

4. Let α be a zero of $x^3 + x^2 + x + 3$ in GF(125).

(a) Compute the Frobenius automorphism $\sigma_5(\alpha)$. [Express $\sigma_5(\alpha)$ in the basis $\{1, \alpha, \alpha^2\}$.]

Since α is a zero of $x^3 + x^2 + x + 3$, we have that $\alpha^3 = -\alpha^2 - \alpha - 3 = 4\alpha^2 + 4\alpha + 2$. We know that $\sigma_5(\alpha) = \alpha^5 = \alpha^2(4\alpha^2 + 4\alpha + 2) = 4\alpha^4 + 4\alpha^3 + 2\alpha^2 = 4\alpha(4\alpha^2 + 4\alpha + 2) + 4\alpha^3 + 2\alpha^2 = 3\alpha^2 + 3\alpha$.

(b) Describe the fixed field of $\{\sigma_5\}$ in terms of this basis.

From part (a), we deduce $\sigma_5(\alpha^2) = (3\alpha^2 + 3\alpha)^2 = 4\alpha^4 + 3\alpha^3 + 4\alpha^2 = 4(4\alpha^3 + 4\alpha^2 + 2\alpha) + 3\alpha^3 + 4\alpha^2 = 4\alpha^3 + 3\alpha = 4(4\alpha^2 + 4\alpha + 2) + 3\alpha = \alpha^2 + 4\alpha + 3$.

From this it is easy to see that no non-trivial linear combination of α and α^2 is fixed, so the fixed field is just \mathbb{Z}_5 .

5. Let $\omega = \frac{-1+\sqrt{3}i}{2}$ (so that $\omega^3 = 1$.) Consider the isomorphism $\psi_{\sqrt[3]{2},\omega\sqrt[3]{2}}$ from $\mathbb{Q}(\sqrt[3]{2})$ to $\mathbb{Q}(\sqrt[3]{2}\omega)$. Compute all ways to extend this isomorphism to an isomorphism mapping $\mathbb{Q}(\sqrt[3]{2}, \omega\sqrt[3]{2})$ to a subfield of \overline{Q} .

We have that $\operatorname{Irr}(\sqrt[3]{2}, \mathbb{Q}) = x^3 - 2$. The zeros of this polynomial are $\sqrt[3]{2}, \omega\sqrt[3]{2}$ and $\omega^2\sqrt[3]{2}, \mathbb{Q}$. Any isomorphism from $\mathbb{Q}(\sqrt[3]{2}, \omega\sqrt[3]{2})$ to a subfield of \overline{Q} must send zeros of this polynomial to zeros of this polynomial. An extension σ of $\psi_{\sqrt[3]{2},\omega\sqrt[3]{2}}$ is entirely determined by its value on $\omega\sqrt[3]{2}$ (or equivalently by its value on ω). This must be either $\sqrt[3]{2}$ or $\omega^2\sqrt[3]{2}$ (corresponding to $\sigma(\omega) = \omega^2$ and $\sigma(\omega) = \omega$ respectively). It is straightforward to check that these both lead to automorphisms of $\mathbb{Q}(\sqrt[3]{2},\omega\sqrt[3]{2})$.

Theoretical Questions

6. Let $F(\alpha_1, \ldots, \alpha_n)$ be an extension field of F. Show that any automorphism σ of $F(\alpha_1, \ldots, \alpha_n)$ leaving F fixed is completely determined by the values $\sigma(\alpha_i)$.

Let σ_1 and σ_2 be two automorphisms that leave F fixed, such that for each $i, \sigma_1(\alpha_i) = \sigma_2(\alpha_i)$. We need to show that $\sigma_1 = \sigma_2$. Let $S = \{x \in$ $F(\alpha_1, \ldots, \alpha_n) | \sigma_1(x) = \sigma_2(x)\}$. We need to show that $S = F(\alpha_1, \ldots, \alpha_n)$. We know that S contains $F, \alpha_1, \ldots, \alpha_n$, so we just need to show that Sis a subfield. Since σ_1 and σ_2 are homomorphisms, S must be closed under addition and multiplication. Furthermore, since $-1 \in F \subseteq S$, S is closed under additive inverse. We need to show that S is closed under multiplicative inverses. Let $\sigma_1(x) = \sigma_2(x)$. We need to show that $\sigma_1(x^{-1}) = \sigma_2(x^{-1})$. However, we know that $\sigma_1(x)\sigma_1(x^{-1}) = \sigma_1(1) =$ $1 = \sigma_2(1) = \sigma_2(x)\sigma_2(x^{-1}) = \sigma_1(x)\sigma_1(x^{-1})$. Therefore, multiplying by $(\sigma_1(x))^{-1}$ (which exists because σ_1 is an isomorphism, so its kernel is trivial, so $\sigma_1(x) \neq 0$) we get that $\sigma_1(x^{-1}) = \sigma_2(x^{-1})$. Therefore S is a subfield of $F(\alpha_1, \ldots, \alpha_n)$ containing F and $\{\alpha_1, \ldots, \alpha_n\}$, so it must be the whole of $F(\alpha_1, \ldots, \alpha_n)$.

7. Let E be an extension field of F. Let S be a set of automorphisms of E fixing F. Let H be the subgroup of G(E/F) generated by S. Show that $E_S = E_H$.

Clearly $S \subseteq H$, so $E_H \subseteq E_S$. We need to show the converse inclusion that if $x \in E_S$, then $x \in E_H$. Let $G_x = \{\sigma \in G(E/F) | \sigma(x) = x\}$. We know that $S \subseteq G_x$ for any $x \in E_S$, so we just need to show that G_x is a subgroup of G(E/F). It is clear that the identity automorphism fixes x, since it fixes every element of E. Suppose $\sigma(x) = x$ and $\tau(x) = x$. Clearly $\sigma^{-1}(x) = x$, and $(\sigma\tau)(x) = \sigma(\tau(x)) = \sigma(x) = x$, so we have that G_x is a subgroup of G(E/F). Since H is the subgroup generated by S, we have that $H \subseteq G_x$ for all $x \in E_s$. This is equivalent to saying $x \in E_H$, so we have $E_S \subseteq E_H$ as required.

8. (a) Show that if F is an algebraically closed field, then any isomorphism σ of F to a subfield of F such that F is algebraic over $\sigma(F)$, is an automorphism of F. [Hint, since $\sigma(F)$ is isomorphic to F, it must be algebraically closed.]

Since $\sigma(F)$ is isomorphic to F, it must be algebraically closed. [We can extend σ to an isomorphism $\sigma[x] : F[x] \longrightarrow (\sigma(F))[x]$, and it is straightforward to see that for any $f \in F[x]$, any $\alpha \in F$ is a zero of f if and only if $\sigma(\alpha)$ is a zero of $\sigma[x](f)$.] We have that F is algebraic over the algebraically closed field $\sigma(F)$. This means that for any $\alpha \in F$, we have $\operatorname{Irr}(\alpha, \sigma(F)) \in \sigma(F)[x]$. However, we know that all zeros of $\operatorname{Irr}(\alpha, \sigma(F))$ are in $\sigma(F)$ (since $\sigma(F)$ is algebraically closed), so we must have $\alpha \in \sigma(F)$. Thus we have $F \subseteq \sigma(F)$, so σ is an automorphism of F.

(b) Let E be an algebraic extension of F. Show that any isomorphism of E onto a subfield of \overline{F} that fixes F can be extended to an automorphism of \overline{F} .

We know that any isomorphism of E onto a subfield of \overline{F} that fixes F extends to an isomorphism τ from \overline{F} to a subfield of \overline{F} . However, τ fixes F, so $F \subseteq \tau(\overline{F})$. Since \overline{F} is algebraic over F, it is algebraic over $\tau(\overline{F})$. Therefore, by part (a), τ is an automorphism of \overline{F} .

9. Let E be an algebraic extension of F. Show that there is an isomorphism of \overline{F} to \overline{E} fixing all elements of F.

The inclusion from F to E is an isomorphism from F to a subfield of E. By the extension theorem, we can extend it to an isomorphism σ from \overline{F} to a subfield of \overline{E} . The image $\sigma(\overline{F})$ is algebraically closed, and contains F, over which \overline{E} is algebraic. Therefore, \overline{E} is algebraic over the algebraically closed field $\sigma(\overline{F})$. Therefore, $\sigma(\overline{F}) = \overline{E}$, so σ is an isomorphism from \overline{F} to \overline{E} .

10. Let E be a finite extension of F. Show that $\{E:F\} \leq [E:F]$. [You may assume the result for simple extensions.]

We know that any finite extension can be expressed as a tower of simple extensions:

$$E = F(\alpha_1, \dots, \alpha_n)$$

$$\downarrow$$

$$F(\alpha_1, \dots, \alpha_{n-1})$$

$$\downarrow$$

$$F(\alpha_1)$$

$$\downarrow$$

$$F$$

This gives

$$\{E:F\} = \{E:F(\alpha_1, \dots, \alpha_{n-1})\}\{F(\alpha_1, \dots, \alpha_{n-1}), F(\alpha_1, \dots, \alpha_{n-2})\} \cdots \{F(\alpha_1):F\}$$

$$\leqslant [E:F(\alpha_1, \dots, \alpha_{n-1})][F(\alpha_1, \dots, \alpha_{n-1}), F(\alpha_1, \dots, \alpha_{n-2})] \cdots [F(\alpha_1):F]$$

$$= [E:F]$$

Bonus Questions

11. Show that if α and β are both transcendental over F, then there is an isomorphism of $F(\alpha)$ and $F(\beta)$ sending α to β .

We define the isomorphism in the obvious way — elements of $F(\alpha)$ are of the form $\frac{f(\alpha)}{g(\alpha)}$ for $f, g \in F[x]$, with no common divisor, such that g is monic (coefficient of the largest power of x is 1). We define $\sigma: F(\alpha) \xrightarrow{F} (\beta)$ by $\sigma\left(\frac{f(\alpha)}{g(\alpha)}\right) = \frac{f(\beta)}{g(\beta)}$. We need to show that this is an isomorphism. It is straightforward to see that it is a homomorphism (assuming it is welldefined), so we just need to show that it is well-defined, that its kernel is zero, and that it is onto. To show that it is well-defined, we need to show that we can't represent the same element of $F(\alpha)$ in more than one way subject to the condition that g is monic, and f and g have no non-trivial common divisor. Suppose we have $\frac{f(\alpha)}{g(\alpha)} = \frac{h(\alpha)}{k(\alpha)}$. Multiplying through gives $f(\alpha)k(\alpha) - g(\alpha)h(\alpha) = 0$. Since α is transcendental over F, this means that fk - gh is the zero polynomial, i.e. fk = gh. Now since f and g have no common factor, this means we must have that g is a divisor of k, and similarly, h is a divisor of f. Furthermore, since g and k are both monic, this must give g = k and f = h. We also need to show that $\frac{f(\beta)}{g(\beta)}$ is an expression of the required form in $F(\beta)$, i.e. that f and g have no non-trivial common factor, and g is monic, but this is true. Next we need to check that σ is onto: given $\gamma = \frac{f(\beta)}{g(\beta)} \in F(\beta)$, we see that $\gamma = \sigma\left(\frac{f(\alpha)}{g(\alpha)}\right)$ is in the image of σ , so σ is onto. Finally, if $\frac{f(\alpha)}{g(\alpha)}$ is in the kernel of σ , then

we have $\frac{f(\beta)}{g(\beta)} = 0$, and therefore, $f(\beta) = 0$. Since β is transcendental over F, this means that f is the zero polynomial, so that $\frac{f(\alpha)}{g(\alpha)} = 0$. Therefore, σ is an isomorphism between $F(\alpha)$ and $F(\beta)$.

12. Show that the only automorphism of \mathbb{R} is the identity. [Hint: show that any automorphism preserves positive numbers (since these are the squares of real numbers) and therefore preserves the order on real numbers.]

Let σ be an automorphism of \mathbb{R} . Any non-negative real number x satisfies $x = y^2$ for some $y \in \mathbb{R}$, so we must have $\sigma(x) = \sigma(y)^2$. Therefore, $\sigma(x)$ is also non-negative. Now for any $x \leq y \in \mathbb{R}$, we have y - x is non-negative, so $\sigma(y) - \sigma(x)$ is also non-negative. Therefore, $\sigma(x) \leq \sigma(y)$. We also know that σ must preserve the prime field \mathbb{Q} . Now for any $x \in \mathbb{R}$, we consider $L = \{q \in \mathbb{Q} | q \leq x\}$ and $U = \{q \in \mathbb{Q} | x \leq q\}$. We know that σ fixes all elements of L and U. However, we also know that $\sigma(x) \leq \sigma(u) = u$ for all $u \in U$ and $l = \sigma(l) \leq \sigma(x)$ for all $l \in L$. The only possible value of $\sigma(x)$ satisfying these constraints is x, so σ is the identity automorphism.