MATH 3030, Abstract Algebra FALL 2012

Toby Kenney
Homework Sheet 14
Model Solutions

Basic Questions

1. Which of the following pairs of numbers are conjugate over \mathbb{Q} ?
(a) $\sqrt{2}$ and $\sqrt{6}$.

These are not conjugate, since $\operatorname{Irr}(\sqrt{2} \cdot \mathbb{Q})=x^{2}-2$, while $\operatorname{Irr}(\sqrt{6} \cdot \mathbb{Q})=$ $x^{2}-6$.
(b) $1+\sqrt{2}$ and $1-\sqrt{2}$.

These are conjugate, since $\operatorname{Irr}(1+\sqrt{2} \cdot \mathbb{Q})=x^{2}-2 x-1=\operatorname{Irr}(1-\sqrt{2} \cdot \mathbb{Q})$.
(c) $\sqrt[4]{2}$ and $\sqrt{2}$.

These are not conjugate, since $\operatorname{Irr}(\sqrt{2} \cdot \mathbb{Q})=x^{2}-2$, while $\operatorname{Irr}(\sqrt[4]{2} \cdot \mathbb{Q})=$ $x^{4}-2$.
2. In $\mathbb{Q}(\sqrt{2}+\sqrt{3})$, compute $\psi_{\sqrt{2}+\sqrt{3}, \sqrt{2}-\sqrt{3}}(2+\sqrt{2}-\sqrt{6})$.

We have that $(\sqrt{2}+\sqrt{3})^{3}=11 \sqrt{2}+9 \sqrt{3}$, so that $\frac{1}{2}(\sqrt{2}+\sqrt{3})^{3}-\frac{9}{2}(\sqrt{2}+$ $\sqrt{3}=\sqrt{2}$, so that $\psi_{\sqrt{2}+\sqrt{3}, \sqrt{2}-\sqrt{3}}(\sqrt{2})=\frac{1}{2}(\sqrt{2}-\sqrt{3})^{3}-\frac{9}{2}(\sqrt{2}-\sqrt{3}=$ $\sqrt{2}$. This means that $\psi_{\sqrt{2}+\sqrt{3}, \sqrt{2}-\sqrt{3}}(\sqrt{3})=\psi_{\sqrt{2}+\sqrt{3}, \sqrt{2}-\sqrt{3}}(\sqrt{2}+\sqrt{3})-$ $\psi_{\sqrt{2}+\sqrt{3}, \sqrt{2}-\sqrt{3}}(\sqrt{2})=-\sqrt{3}$. This gives $\psi_{\sqrt{2}+\sqrt{3}, \sqrt{2}-\sqrt{3}}(2+\sqrt{2}-\sqrt{6})=$ $2+\sqrt{2}-(\sqrt{2} \times-\sqrt{3})=2+\sqrt{2}+\sqrt{6}$.
3. In $\mathbb{Q}(\sqrt{2}+\sqrt{3})$, compute the fixed field of $\left\{\psi_{\sqrt{2}+\sqrt{3},-\sqrt{2}-\sqrt{3}}\right\}$.

We know that $\psi_{\sqrt{2}+\sqrt{3},-\sqrt{2}-\sqrt{3}}(\sqrt{2})=-\sqrt{2}$ and $\psi_{\sqrt{2}+\sqrt{3},-\sqrt{2}-\sqrt{3}}(\sqrt{3})=$ $-\sqrt{3}$, and $\psi_{\sqrt{2}+\sqrt{3},-\sqrt{2}-\sqrt{3}}(\sqrt{6})=\sqrt{6}$, and we know that $\mathbb{Q}(\sqrt{6})$ is fixed, but $\sqrt{3}$ is not. Since there are no extensions between $\mathbb{Q}(\sqrt{6})$ and $\mathbb{Q}(\sqrt{2}+$ $\sqrt{3})$, the fixed field must be $\mathbb{Q}(\sqrt{6})$.
4. Let α be a zero of $x^{3}+x^{2}+x+3$ in GF(125).
(a) Compute the Frobenius automorphism $\sigma_{5}(\alpha)$. [Express $\sigma_{5}(\alpha)$ in the basis $\left\{1, \alpha, \alpha^{2}\right\}$.]
Since α is a zero of $x^{3}+x^{2}+x+3$, we have that $\alpha^{3}=-\alpha^{2}-\alpha-3=$ $4 \alpha^{2}+4 \alpha+2$. We know that $\sigma_{5}(\alpha)=\alpha^{5}=\alpha^{2}\left(4 \alpha^{2}+4 \alpha+2\right)=4 \alpha^{4}+$ $4 \alpha^{3}+2 \alpha^{2}=4 \alpha\left(4 \alpha^{2}+4 \alpha+2\right)+4 \alpha^{3}+2 \alpha^{2}=3 \alpha^{2}+3 \alpha$.
(b) Describe the fixed field of $\left\{\sigma_{5}\right\}$ in terms of this basis.

From part (a), we deduce $\sigma_{5}\left(\alpha^{2}\right)=\left(3 \alpha^{2}+3 \alpha\right)^{2}=4 \alpha^{4}+3 \alpha^{3}+4 \alpha^{2}=$ $4\left(4 \alpha^{3}+4 \alpha^{2}+2 \alpha\right)+3 \alpha^{3}+4 \alpha^{2}=4 \alpha^{3}+3 \alpha=4\left(4 \alpha^{2}+4 \alpha+2\right)+3 \alpha=\alpha^{2}+4 \alpha+3$.

From this it is easy to see that no non-trivial linear combination of α and α^{2} is fixed, so the fixed field is just \mathbb{Z}_{5}.
5. Let $\omega=\frac{-1+\sqrt{3} i}{2}$ (so that $\omega^{3}=1$.) Consider the isomorphism $\psi \sqrt[3]{2}, \omega \sqrt[3]{2}$ from $\mathbb{Q}(\sqrt[3]{2})$ to $\mathbb{Q}(\sqrt[3]{2} \omega)$. Compute all ways to extend this isomorphism to an isomorphism mapping $\mathbb{Q}(\sqrt[3]{2}, \omega \sqrt[3]{2})$ to a subfield of \bar{Q}.
We have that $\operatorname{Irr}(\sqrt[3]{2}, \mathbb{Q})=x^{3}-2$. The zeros of this polynomial are $\sqrt[3]{2}, \omega \sqrt[3]{2}$ and $\omega^{2} \sqrt[3]{2}$. Any isomorphism from $\mathbb{Q}(\sqrt[3]{2}, \omega \sqrt[3]{2})$ to a subfield of \bar{Q} must send zeros of this polynomial to zeros of this polynomial. An extension σ of $\psi \sqrt[3]{2}, \omega \sqrt[3]{2}$ is entirely determined by its value on $\omega \sqrt[3]{2}$ (or equivalently by its value on ω). This must be either $\sqrt[3]{2}$ or $\omega^{2} \sqrt[3]{2}$ (corresponding to $\sigma(\omega)=\omega^{2}$ and $\sigma(\omega)=\omega$ respectively). It is straightforward to check that these both lead to automorphisms of $\mathbb{Q}(\sqrt[3]{2}, \omega \sqrt[3]{2})$.

Theoretical Questions

6. Let $F\left(\alpha_{1}, \ldots, \alpha_{n}\right)$ be an extension field of F. Show that any automorphism σ of $F\left(\alpha_{1}, \ldots, \alpha_{n}\right)$ leaving F fixed is completely determined by the values $\sigma\left(\alpha_{i}\right)$.
Let σ_{1} and σ_{2} be two automorphisms that leave F fixed, such that for each $i, \sigma_{1}\left(\alpha_{i}\right)=\sigma_{2}\left(\alpha_{i}\right)$. We need to show that $\sigma_{1}=\sigma_{2}$. Let $S=\{x \in$ $\left.F\left(\alpha_{1}, \ldots, \alpha_{n}\right) \mid \sigma_{1}(x)=\sigma_{2}(x)\right\}$. We need to show that $S=F\left(\alpha_{1}, \ldots, \alpha_{n}\right)$. We know that S contains $F, \alpha_{1}, \ldots, \alpha_{n}$, so we just need to show that S is a subfield. Since σ_{1} and σ_{2} are homomorphisms, S must be closed under addition and multiplication. Furthermore, since $-1 \in F \subseteq S$, S is closed under additive inverse. We need to show that S is closed under multiplicative inverses. Let $\sigma_{1}(x)=\sigma_{2}(x)$. We need to show that $\sigma_{1}\left(x^{-1}\right)=\sigma_{2}\left(x^{-1}\right)$. However, we know that $\sigma_{1}(x) \sigma_{1}\left(x^{-1}\right)=\sigma_{1}(1)=$ $1=\sigma_{2}(1)=\sigma_{2}(x) \sigma_{2}\left(x^{-1}\right)=\sigma_{1}(x) \sigma_{1}\left(x^{-1}\right)$. Therefore, multiplying by $\left(\sigma_{1}(x)\right)^{-1}$ (which exists because σ_{1} is an isomorphism, so its kernel is trivial, so $\left.\sigma_{1}(x) \neq 0\right)$ we get that $\sigma_{1}\left(x^{-1}\right)=\sigma_{2}\left(x^{-1}\right)$. Therefore S is a subfield of $F\left(\alpha_{1}, \ldots, \alpha_{n}\right)$ containing F and $\left\{\alpha_{1}, \ldots, \alpha_{n}\right\}$, so it must be the whole of $F\left(\alpha_{1}, \ldots, \alpha_{n}\right)$.
7. Let E be an extension field of F. Let S be a set of automorphisms of E fixing F. Let H be the subgroup of $G(E / F)$ generated by S. Show that $E_{S}=E_{H}$.
Clearly $S \subseteq H$, so $E_{H} \subseteq E_{S}$. We need to show the converse inclusion that if $x \in E_{S}$, then $x \in E_{H}$. Let $G_{x}=\{\sigma \in G(E / F) \mid \sigma(x)=x\}$. We know that $S \subseteq G_{x}$ for any $x \in E_{S}$, so we just need to show that G_{x} is a subgroup of $G(E / F)$. It is clear that the identity automorphism fixes x, since it fixes every element of E. Suppose $\sigma(x)=x$ and $\tau(x)=x$. Clearly $\sigma^{-1}(x)=x$, and $(\sigma \tau)(x)=\sigma(\tau(x))=\sigma(x)=x$, so we have that G_{x} is a subgroup of $G(E / F)$. Since H is the subgroup generated by S, we have
that $H \subseteq G_{x}$ for all $x \in E_{s}$. This is equivalent to saying $x \in E_{H}$, so we have $E_{S} \subseteq E_{H}$ as required.
8. (a) Show that if F is an algebraically closed field, then any isomorphism σ of F to a subfield of F such that F is algebraic over $\sigma(F)$, is an automorphism of F. [Hint, since $\sigma(F)$ is isomorphic to F, it must be algebraically closed.]
Since $\sigma(F)$ is isomorphic to F, it must be algebraically closed. [We can extend σ to an isomorphism $\sigma[x]: F[x] \longrightarrow(\sigma(F))[x]$, and it is straightforward to see that for any $f \in F[x]$, any $\alpha \in F$ is a zero of f if and only if $\sigma(\alpha)$ is a zero of $\sigma[x](f)$.] We have that F is algebraic over the algebraically closed field $\sigma(F)$. This means that for any $\alpha \in F$, we have $\operatorname{Irr}(\alpha, \sigma(F)) \in \sigma(F)[x]$. However, we know that all zeros of $\operatorname{Irr}(\alpha, \sigma(F))$ are in $\sigma(F)$ (since $\sigma(F)$ is algebraically closed), so we must have $\alpha \in \sigma(F)$. Thus we have $F \subseteq \sigma(F)$, so σ is an automorphism of F.
(b) Let E be an algebraic extension of F. Show that any isomorphism of E onto a subfield of \bar{F} that fixes F can be extended to an automorphism of \bar{F}.
We know that any isomorphism of E onto a subfield of \bar{F} that fixes F extends to an isomorphism τ from \bar{F} to a subfield of \bar{F}. However, τ fixes F, so $F \subseteq \tau(\bar{F})$. Since \bar{F} is algebraic over F, it is algebraic over $\tau(\bar{F})$. Therefore, by part (a), τ is an automorphism of \bar{F}.
9. Let E be an algebraic extension of F. Show that there is an isomorphism of \bar{F} to \bar{E} fixing all elements of F.
The inclusion from F to E is an isomorphism from F to a subfield of E. By the extension theorem, we can extend it to an isomorphism σ from \bar{F} to a subfield of \bar{E}. The image $\sigma(\bar{F})$ is algebraically closed, and contains F, over which \bar{E} is algebraic. Therefore, \bar{E} is algebraic over the algebraically closed field $\sigma(\bar{F})$. Therefore, $\sigma(\bar{F})=\bar{E}$, so σ is an isomorphism from \bar{F} to \bar{E}.
10. Let E be a finite extension of F. Show that $\{E: F\} \leqslant[E: F]$. [You may assume the result for simple extensions.]
We know that any finite extension can be expressed as a tower of simple extensions:

This gives

$$
\begin{aligned}
\{E: F\} & =\left\{E: F\left(\alpha_{1}, \ldots, \alpha_{n-1}\right)\right\}\left\{F\left(\alpha_{1}, \ldots, \alpha_{n-1}\right), F\left(\alpha_{1}, \ldots, \alpha_{n-2}\right)\right\} \cdots\left\{F\left(\alpha_{1}\right): F\right\} \\
& \leqslant\left[E: F\left(\alpha_{1}, \ldots, \alpha_{n-1}\right)\right]\left[F\left(\alpha_{1}, \ldots, \alpha_{n-1}\right), F\left(\alpha_{1}, \ldots, \alpha_{n-2}\right)\right] \cdots\left[F\left(\alpha_{1}\right): F\right] \\
& =[E: F]
\end{aligned}
$$

Bonus Questions

11. Show that if α and β are both transcendental over F, then there is an isomorphism of $F(\alpha)$ and $F(\beta)$ sending α to β.
We define the isomorphism in the obvious way - elements of $F(\alpha)$ are of the form $\frac{f(\alpha)}{g(\alpha)}$ for $f, g \in F[x]$, with no common divisor, such that g is monic (coefficient of the largest power of x is 1). We define $\sigma: F(\alpha) \xrightarrow{F}(\beta)$ by $\sigma\left(\frac{f(\alpha)}{g(\alpha)}\right)=\frac{f(\beta)}{g(\beta)}$. We need to show that this is an isomorphism. It is straightforward to see that it is a homomorphism (assuming it is welldefined), so we just need to show that it is well-defined, that its kernel is zero, and that it is onto. To show that it is well-defined, we need to show that we can't represent the same element of $F(\alpha)$ in more than one way subject to the condition that g is monic, and f and g have no non-trivial common divisor. Suppose we have $\frac{f(\alpha)}{g(\alpha)}=\frac{h(\alpha)}{k(\alpha)}$. Multiplying through gives $f(\alpha) k(\alpha)-g(\alpha) h(\alpha)=0$. Since α is transcendental over F, this means that $f k-g h$ is the zero polynomial, i.e. $f k=g h$. Now since f and g have no common factor, this means we must have that g is a divisor of k, and similarly, h is a divisor of f. Furthermore, since g and k are both monic, this must give $g=k$ and $f=h$. We also need to show that $\frac{f(\beta)}{g(\beta)}$ is an expression of the required form in $F(\beta)$, i.e. that f and g have no non-trivial common factor, and g is monic, but this is true. Next we need to check that σ is onto: given $\gamma=\frac{f(\beta)}{g(\beta)} \in F(\beta)$, we see that $\gamma=\sigma\left(\frac{f(\alpha)}{g(\alpha)}\right)$ is in the image of σ, so σ is onto. Finally, if $\frac{f(\alpha)}{g(\alpha)}$ is in the kernel of σ, then
we have $\frac{f(\beta)}{g(\beta)}=0$, and therefore, $f(\beta)=0$. Since β is transcendental over F, this means that f is the zero polynomial, so that $\frac{f(\alpha)}{g(\alpha)}=0$. Therefore, σ is an isomorphism between $F(\alpha)$ and $F(\beta)$.
12. Show that the only automorphism of \mathbb{R} is the identity. [Hint: show that any automorphism preserves positive numbers (since these are the squares of real numbers) and therefore preserves the order on real numbers.]
Let σ be an automorphism of \mathbb{R}. Any non-negative real number x satisfies $x=y^{2}$ for some $y \in \mathbb{R}$, so we must have $\sigma(x)=\sigma(y)^{2}$. Therefore, $\sigma(x)$ is also non-negative. Now for any $x \leqslant y \in \mathbb{R}$, we have $y-x$ is non-negative, so $\sigma(y)-\sigma(x)$ is also non-negative. Therefore, $\sigma(x) \leqslant \sigma(y)$. We also know that σ must preserve the prime field \mathbb{Q}. Now for any $x \in \mathbb{R}$, we consider $L=\{q \in \mathbb{Q} \mid q \leqslant x\}$ and $U=\{q \in \mathbb{Q} \mid x \leqslant q\}$. We know that σ fixes all elements of L and U. However, we also know that $\sigma(x) \leqslant \sigma(u)=u$ for all $u \in U$ and $l=\sigma(l) \leqslant \sigma(x)$ for all $l \in L$. The only possible value of $\sigma(x)$ satisfying these constraints is x, so σ is the identity automorphism.
