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Model Solutions

Basic Questions

1. Which of the following pairs of numbers are conjugate over Q?

(a)
√

2 and
√

6.

These are not conjugate, since Irr(
√

2.Q) = x2 − 2, while Irr(
√

6.Q) =
x2 − 6.

(b) 1 +
√

2 and 1−
√

2.

These are conjugate, since Irr(1 +
√

2.Q) = x2 − 2x− 1 = Irr(1−
√

2.Q).

(c) 4
√

2 and
√

2.

These are not conjugate, since Irr(
√

2.Q) = x2 − 2, while Irr( 4
√

2.Q) =
x4 − 2.

2. In Q(
√

2 +
√

3), compute ψ√2+
√
3,
√
2−
√
3(2 +

√
2−
√

6).

We have that (
√

2 +
√

3)3 = 11
√

2 + 9
√

3, so that 1
2 (
√

2 +
√

3)3 − 9
2 (
√

2 +√
3 =

√
2, so that ψ√2+

√
3,
√
2−
√
3(
√

2) = 1
2 (
√

2 −
√

3)3 − 9
2 (
√

2 −
√

3 =√
2. This means that ψ√2+

√
3,
√
2−
√
3(
√

3) = ψ√2+
√
3,
√
2−
√
3(
√

2 +
√

3) −
ψ√2+

√
3,
√
2−
√
3(
√

2) = −
√

3. This gives ψ√2+
√
3,
√
2−
√
3(2 +

√
2 −
√

6) =

2 +
√

2− (
√

2×−
√

3) = 2 +
√

2 +
√

6.

3. In Q(
√

2 +
√

3), compute the fixed field of {ψ√2+
√
3,−
√
2−
√
3}.

We know that ψ√2+
√
3,−
√
2−
√
3(
√

2) = −
√

2 and ψ√2+
√
3,−
√
2−
√
3(
√

3) =

−
√

3, and ψ√2+
√
3,−
√
2−
√
3(
√

6) =
√

6, and we know that Q(
√

6) is fixed,

but
√

3 is not. Since there are no extensions between Q(
√

6) and Q(
√

2 +√
3), the fixed field must be Q(

√
6).

4. Let α be a zero of x3 + x2 + x+ 3 in GF(125).

(a) Compute the Frobenius automorphism σ5(α). [Express σ5(α) in the
basis {1, α, α2}.]
Since α is a zero of x3 + x2 + x + 3, we have that α3 = −α2 − α − 3 =
4α2 + 4α + 2. We know that σ5(α) = α5 = α2(4α2 + 4α + 2) = 4α4 +
4α3 + 2α2 = 4α(4α2 + 4α+ 2) + 4α3 + 2α2 = 3α2 + 3α.

(b) Describe the fixed field of {σ5} in terms of this basis.

From part (a), we deduce σ5(α2) = (3α2 + 3α)2 = 4α4 + 3α3 + 4α2 =
4(4α3+4α2+2α)+3α3+4α2 = 4α3+3α = 4(4α2+4α+2)+3α = α2+4α+3.
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From this it is easy to see that no non-trivial linear combination of α and
α2 is fixed, so the fixed field is just Z5.

5. Let ω = −1+
√
3i

2 (so that ω3 = 1.) Consider the isomorphism ψ 3√2,ω 3√2

from Q
(

3
√

2
)

to Q
(

3
√

2ω
)
. Compute all ways to extend this isomorphism

to an isomorphism mapping Q( 3
√

2, ω 3
√

2) to a subfield of Q.

We have that Irr( 3
√

2,Q) = x3 − 2. The zeros of this polynomial are
3
√

2, ω 3
√

2 and ω2 3
√

2. Any isomorphism from Q( 3
√

2, ω 3
√

2) to a subfield
of Q must send zeros of this polynomial to zeros of this polynomial. An
extension σ of ψ 3√2,ω 3√2 is entirely determined by its value on ω 3

√
2 (or

equivalently by its value on ω). This must be either 3
√

2 or ω2 3
√

2 (corre-
sponding to σ(ω) = ω2 and σ(ω) = ω respectively). It is straightforward
to check that these both lead to automorphisms of Q( 3

√
2, ω 3
√

2).

Theoretical Questions

6. Let F (α1, . . . , αn) be an extension field of F . Show that any automorphism
σ of F (α1, . . . , αn) leaving F fixed is completely determined by the values
σ(αi).

Let σ1 and σ2 be two automorphisms that leave F fixed, such that for
each i, σ1(αi) = σ2(αi). We need to show that σ1 = σ2. Let S = {x ∈
F (α1, . . . , αn)|σ1(x) = σ2(x)}. We need to show that S = F (α1, . . . , αn).
We know that S contains F, α1, . . . , αn, so we just need to show that S
is a subfield. Since σ1 and σ2 are homomorphisms, S must be closed
under addition and multiplication. Furthermore, since −1 ∈ F ⊆ S,
S is closed under additive inverse. We need to show that S is closed
under multiplicative inverses. Let σ1(x) = σ2(x). We need to show that
σ1(x−1) = σ2(x−1). However, we know that σ1(x)σ1(x−1) = σ1(1) =
1 = σ2(1) = σ2(x)σ2(x−1) = σ1(x)σ1(x−1). Therefore, multiplying by
(σ1(x))−1 (which exists because σ1 is an isomorphism, so its kernel is
trivial, so σ1(x) 6= 0) we get that σ1(x−1) = σ2(x−1). Therefore S is a
subfield of F (α1, . . . , αn) containing F and {α1, . . . , αn}, so it must be the
whole of F (α1, . . . , αn).

7. Let E be an extension field of F . Let S be a set of automorphisms of E
fixing F . Let H be the subgroup of G(E/F ) generated by S. Show that
ES = EH .

Clearly S ⊆ H, so EH ⊆ ES . We need to show the converse inclusion
that if x ∈ ES , then x ∈ EH . Let Gx = {σ ∈ G(E/F )|σ(x) = x}. We
know that S ⊆ Gx for any x ∈ ES , so we just need to show that Gx is a
subgroup of G(E/F ). It is clear that the identity automorphism fixes x,
since it fixes every element of E. Suppose σ(x) = x and τ(x) = x. Clearly
σ−1(x) = x, and (στ)(x) = σ(τ(x)) = σ(x) = x, so we have that Gx is a
subgroup of G(E/F ). Since H is the subgroup generated by S, we have
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that H ⊆ Gx for all x ∈ Es. This is equivalent to saying x ∈ EH , so we
have ES ⊆ EH as required.

8. (a) Show that if F is an algebraically closed field, then any isomorphism σ
of F to a subfield of F such that F is algebraic over σ(F ), is an automor-
phism of F . [Hint, since σ(F ) is isomorphic to F , it must be algebraically
closed.]

Since σ(F ) is isomorphic to F , it must be algebraically closed. [We can
extend σ to an isomorphism σ[x] : F [x] // (σ(F ))[x], and it is straight-
forward to see that for any f ∈ F [x], any α ∈ F is a zero of f if and
only if σ(α) is a zero of σ[x](f).] We have that F is algebraic over the
algebraically closed field σ(F ). This means that for any α ∈ F , we have
Irr(α, σ(F )) ∈ σ(F )[x]. However, we know that all zeros of Irr(α, σ(F ))
are in σ(F ) (since σ(F ) is algebraically closed), so we must have α ∈ σ(F ).
Thus we have F ⊆ σ(F ), so σ is an automorphism of F .

(b) Let E be an algebraic extension of F . Show that any isomorphism of
E onto a subfield of F that fixes F can be extended to an automorphism
of F .

We know that any isomorphism of E onto a subfield of F that fixes F
extends to an isomorphism τ from F to a subfield of F . However, τ fixes
F , so F ⊆ τ(F ). Since F is algebraic over F , it is algebraic over τ(F ).
Therefore, by part (a), τ is an automorphism of F .

9. Let E be an algebraic extension of F . Show that there is an isomorphism
of F to E fixing all elements of F .

The inclusion from F to E is an isomorphism from F to a subfield of E.
By the extension theorem, we can extend it to an isomorphism σ from F
to a subfield of E. The image σ(F ) is algebraically closed, and contains F ,
over which E is algebraic. Therefore, E is algebraic over the algebraically
closed field σ(F ). Therefore, σ(F ) = E, so σ is an isomorphism from F
to E.

10. Let E be a finite extension of F . Show that {E : F} 6 [E : F ]. [You may
assume the result for simple extensions.]

We know that any finite extension can be expressed as a tower of simple
extensions:
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E = F (α1, . . . , αn)

F (α1, . . . , αn−1)

F (α1)

F

This gives

{E : F} = {E : F (α1, . . . , αn−1)}{F (α1, . . . , αn−1), F (α1, . . . , αn−2)} · · · {F (α1) : F}
6 [E : F (α1, . . . , αn−1)][F (α1, . . . , αn−1), F (α1, . . . , αn−2)] · · · [F (α1) : F ]

= [E : F ]

Bonus Questions

11. Show that if α and β are both transcendental over F , then there is an
isomorphism of F (α) and F (β) sending α to β.

We define the isomorphism in the obvious way — elements of F (α) are of

the form f(α)
g(α) for f, g ∈ F [x], with no common divisor, such that g is monic

(coefficient of the largest power of x is 1). We define σ : F (α)
F // (β)

by σ
(
f(α)
g(α)

)
= f(β)

g(β) . We need to show that this is an isomorphism. It

is straightforward to see that it is a homomorphism (assuming it is well-
defined), so we just need to show that it is well-defined, that its kernel is
zero, and that it is onto. To show that it is well-defined, we need to show
that we can’t represent the same element of F (α) in more than one way
subject to the condition that g is monic, and f and g have no non-trivial

common divisor. Suppose we have f(α)
g(α) = h(α)

k(α) . Multiplying through gives

f(α)k(α) − g(α)h(α) = 0. Since α is transcendental over F , this means
that fk − gh is the zero polynomial, i.e. fk = gh. Now since f and g
have no common factor, this means we must have that g is a divisor of
k, and similarly, h is a divisor of f . Furthermore, since g and k are both

monic, this must give g = k and f = h. We also need to show that f(β)
g(β)

is an expression of the required form in F (β), i.e. that f and g have no
non-trivial common factor, and g is monic, but this is true. Next we need

to check that σ is onto: given γ = f(β)
g(β) ∈ F (β), we see that γ = σ

(
f(α)
g(α)

)
is in the image of σ, so σ is onto. Finally, if f(α)g(α) is in the kernel of σ, then
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we have f(β)
g(β) = 0, and therefore, f(β) = 0. Since β is transcendental over

F , this means that f is the zero polynomial, so that f(α)
g(α) = 0. Therefore,

σ is an isomorphism between F (α) and F (β).

12. Show that the only automorphism of R is the identity. [Hint: show that
any automorphism preserves positive numbers (since these are the squares
of real numbers) and therefore preserves the order on real numbers.]

Let σ be an automorphism of R. Any non-negative real number x satisfies
x = y2 for some y ∈ R, so we must have σ(x) = σ(y)2. Therefore, σ(x) is
also non-negative. Now for any x 6 y ∈ R, we have y− x is non-negative,
so σ(y)−σ(x) is also non-negative. Therefore, σ(x) 6 σ(y). We also know
that σ must preserve the prime field Q. Now for any x ∈ R, we consider
L = {q ∈ Q|q 6 x} and U = {q ∈ Q|x 6 q}. We know that σ fixes all
elements of L and U . However, we also know that σ(x) 6 σ(u) = u for all
u ∈ U and l = σ(l) 6 σ(x) for all l ∈ L. The only possible value of σ(x)
satisfying these constraints is x, so σ is the identity automorphism.
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