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Basic Questions

1. Find a basis for the splitting field over Q of x3 − 4.

The splitting field is Q
(

3
√

4,
√
3
2 i

)
. One basis for this field is {1, 3

√
4, 2 3
√

2,
√
3
2 i,

√
3 3√4
2 i,

√
3 3√2
2 i}.

2. (a) What is the order of G(Q( 3
√

2)/Q)?

Any automorphism of Q( 3
√

2) fixing Q, must send 3
√

2 to a zero of x3 −
2. The only zero of this polynomial in Q( 3

√
2) is 3

√
2. Therefore, the

isomorphism must fix the whole of Q( 3
√

2), so G(Q( 3
√

2)/Q) is the trivial
group, and has order 1.

(b) What is the order of G(Q( 3
√

2, sqrt32 i)/Q(
√

32i))?

We know that [Q( 3
√

2, sqrt32 i) : Q(
√

32i)] = 3. Furthermore, the zeros of

x3 − 2 in Q( 3
√

2, sqrt32 i) are 3
√

2, ω 3
√

2 and ω2 3
√

2, where ω = −1+
√
3i

2 is a
complex cube root of unity. We therefore have automorphisms ψ 3√2,ωn 3√2

for n = 0, 1, 2. This gives at least 3 automorphisms. The number of auto-
morphisms can’t be more than 3, so the order ofG(Q( 3

√
2, sqrt32 i)/Q(

√
32i))

is 3.

3. Find an element α such that Q(
√

2, 3
√

3) = Q(α), and express
√

2 and 3
√

3
as polynomials in this α over Q.

One such element is α =
√

2 + 3
√

3. We see that

α =
√

2 +
3
√

3α2 = 2 + 2
√

2
3
√

3 +
3
√

9

α3 = 2
√

2 + 6
3
√

3 + 3
√

2
3
√

9 + 3

α4 = 4 + 8
√

2
3
√

3 + 12
3
√

9 + 12
√

2 + 3
3
√

3

α5 = 4
√

2 + 20
3
√

3 + 20
√

2
3
√

9 + 60 + 15
√

2
3
√

3

Now we solve these equations for
√

2 and 3
√

3.
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1
√

2 3
√

3
√

2 3
√

3 3
√

9
√

2 3
√

9
1 1 0 0 0 0 0
α 0 1 1 0 0 0
α2 2 0 0 2 1 0
α3 3 2 6 0 0 3
α4 4 12 3 8 12 0
α5 60 4 20 15 0 20

Solving these by row reduction gives:

3
√

3 =
1

791
(1020− 36α+ 540α2 + 320α3 − 45α4 − 48α5)

and therefore

√
2 =

1

791
(−1020 + 825α− 540α2 − 320α3 + 45α4 + 48α5)

Theoretical Questions

4. Show that if E is a finite extension of F , and E is a splitting field over
F , then E is the splitting field of a single polynomial over F .

Pick a basis α1, . . . , αn} for E over F . Let fi = Irr(αi, F ). Now it is clear
that E is the splitting field for {f1, f2, . . . , fn}. (This set could have fewer
than n elements, since some of the fi might be repeated.) Now this means
that E is the splitting field for the product f1f2 · · · fn, which is a single
polynomial over F .

5. Show that if E is a splitting field over F , then for any element α ∈ E, E
contains all conjugates of α over F .

Let α ∈ E, and let α′ ∈ F be a conjugate of α. Then we have the
isomorphism ψα,α′ from E to a subfield of F . This extends to an auto-
morphism of F leaving F fixed. Since E is a splitting field, this induces
an automorphism of E. This means that ψα,α′(α) = α′ is in E.

6. Let E be a splitting field of an irreducible polynomial f(x) over F . Let σ
be an automorphism of E that leaves F fixed.

(a) Show that σ induces a permutation of the zeros of f(x).

We know that if α is a zero of f(x) and σ(α) = α′, then f(α′) = σ(f(α)) =
σ(0) = 0, so α′ must be a zero of f . Therefore, restricting σ to zeros of f
gives a function from zeros of f to zeros of f . This function is one-to-one,
since σ is, and since the set of zeros of f is finite, this function must also
be onto, so it must be a permutation of the zeros of f .

(b) Show that if σ′ is another automorphism of E that leaves f fixed and
induces the same permutation on the zeros of f(x) as σ, then σ′ = σ.
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Consider the subset S = {x ∈ E|σ(x) = σ′(x)}. This set contains F and
all the zeros of f . We now want to show that it is a subfield. Since E
is the smallest field that contains F and all zeros of f , this will prove
that S = E. It is clear that if σ(x) = σ′(x) and σ(y) = σ′(y), then
we must have σ(x + y) = σ(x) + σ(y) = σ′(x) + σ′(y) = σ′(x + y),
and similarly σ(xy) = σ(x)σ(y) = σ′(x)σ′(y) = σ′(xy). We need to
check that if x 6= 0, then σ(x−1) = σ′(x−1). However, we know that
σ(x−1) = σ(x)−1 = σ′(x)−1 = σ′(x−1).

7. Show that if E is an algebraic extension of a perfect field F , then E is
perfect.

Suppose E is not perfect, and that E′ is a finite extension of E which is
not separable over E. There must be some α ∈ E′ which is not separable
over E. Now let f = Irr(α, F ) (this exists because E is algebraic over f ,
and α is algebraic over E), and let g = Irr(α,E). Now clearly f is also
a polynomial in E[x], and α is a zero of f , so f is divisible by g in E[x].
However, in E′[x], g is divisible by (x−α)2, so f must also be divisible by
(x − α)2, so α is not separable over F . This means that F (α) is a finite,
but not separable extension of F . This contradicts our assumption that
F is perfect.

8. Let K be a field extension of F , and let L be a field extension of K. Let
α ∈ L be algebraic over F . Show that [K(α) : K] 6 [F (α) : F ].

We know that {1, α, α2, . . . , αn} is a basis for K(α) over K, for some n.
Now if {1, α, α2, . . . , αn} are not independent elements over F , then α is
a zero of some polynomial f of degree at most n over F . Now f is also a
polynomial over K, and α is still a zero of f over K, so {1, α, α2, . . . , αn}
are not linearly independent over K, contradicting our assumption that
they are a basis for K(α) over K.

Bonus Questions

9. For an infinite algebraic field extension, we will say that the extension is
separable if every element of the larger field is separable over the smaller
field. Show that if E is a separable extension of F and K is a separable
extension of E, then K is a separable extension of F .

Let α ∈ K. We need to show that α is separable over F . However, we
know that α is separable over E, and E is separable over F . We will show
that F (α) is separable over F . Let f = Irr(α, F ) and g = Irr(α,E). Since
f is a polynomial in E[x], and α is a zero of f , we must have that g divides
f , so f = gh for some h ∈ E[x]. Since (x − α)2 divides f in K[x], but
does not divide g, we must have that (x − α) divides h. Since g is the
smallest polynomial that has α as a zero, we must have that g divides h, so
h = gk, and f = g2k. Now consider the splitting field L for f over F , and
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consider L ∩ E. Clearly, g ∈ L[x], so we must have g ∈ (L ∩ E)[x]. Since
E is a separable extension of F , we must have that (L∩E) is a separable
extension of F . Furthermore, since every element of L is separable over
E, and L is a splitting field over (L ∩ E), for any β ∈ L, we must have
Irr(β,E) ∈ L[x], since this polynomial is a product of the linear factors
(x − βi), all of which are in L[x]. Therefore, g ∈ (L ∩ E)[x], and since
g has no repeated zeros, we have shown that L is separable over L ∩ E.
Therefore, L is separable over F , so α is separable over F .
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