MATH 3030, Abstract Algebra FALL 2012 Toby Kenney Homework Sheet 15 Model Solutions

Basic Questions

- 1. Find a basis for the splitting field over \mathbb{Q} of $x^3 4$. The splitting field is $\mathbb{Q}\left(\sqrt[3]{4}, \frac{\sqrt{3}}{2}i\right)$. One basis for this field is $\{1, \sqrt[3]{4}, 2\sqrt[3]{2}, \frac{\sqrt{3}}{2}i, \frac{\sqrt{3}\sqrt[3]{4}}{2}i, \frac{\sqrt{3}\sqrt[3]{2}}{2}i\}$.
- 2. (a) What is the order of $G(\mathbb{Q}(\sqrt[3]{2})/\mathbb{Q})$?

Any automorphism of $\mathbb{Q}(\sqrt[3]{2})$ fixing \mathbb{Q} , must send $\sqrt[3]{2}$ to a zero of $x^3 - 2$. The only zero of this polynomial in $\mathbb{Q}(\sqrt[3]{2})$ is $\sqrt[3]{2}$. Therefore, the isomorphism must fix the whole of $\mathbb{Q}(\sqrt[3]{2})$, so $G(\mathbb{Q}(\sqrt[3]{2})/\mathbb{Q})$ is the trivial group, and has order 1.

(b) What is the order of $G(\mathbb{Q}(\sqrt[3]{2}, \frac{sqrt3}{2}i)/\mathbb{Q}(\sqrt{3}2i))$?

We know that $[\mathbb{Q}(\sqrt[3]{2}, \frac{sqrt3}{2}i) : \mathbb{Q}(\sqrt{3}2i)] = 3$. Furthermore, the zeros of $x^3 - 2$ in $\mathbb{Q}(\sqrt[3]{2}, \frac{sqrt3}{2}i)$ are $\sqrt[3]{2}, \omega\sqrt[3]{2}$ and $\omega^2\sqrt[3]{2}$, where $\omega = \frac{-1+\sqrt{3}i}{2}$ is a complex cube root of unity. We therefore have automorphisms $\psi_{\sqrt[3]{2},\omega^n\sqrt[3]{2}}$ for n = 0, 1, 2. This gives at least 3 automorphisms. The number of automorphisms can't be more than 3, so the order of $G(\mathbb{Q}(\sqrt[3]{2}, \frac{sqrt3}{2}i)/\mathbb{Q}(\sqrt{3}2i))$ is 3.

3. Find an element α such that $\mathbb{Q}(\sqrt{2}, \sqrt[3]{3}) = \mathbb{Q}(\alpha)$, and express $\sqrt{2}$ and $\sqrt[3]{3}$ as polynomials in this α over \mathbb{Q} .

One such element is $\alpha = \sqrt{2} + \sqrt[3]{3}$. We see that

$$\begin{aligned} \alpha &= \sqrt{2} + \sqrt[3]{3}\alpha^2 &= 2 + 2\sqrt{2}\sqrt[3]{3} + \sqrt[3]{9} \\ \alpha^3 &= 2\sqrt{2} + 6\sqrt[3]{3} + 3\sqrt{2}\sqrt[3]{9} + 3 \\ \alpha^4 &= 4 + 8\sqrt{2}\sqrt[3]{3} + 12\sqrt[3]{9} + 12\sqrt{2} + 3\sqrt[3]{3} \\ \alpha^5 &= 4\sqrt{2} + 20\sqrt[3]{3} + 20\sqrt{2}\sqrt[3]{9} + 60 + 15\sqrt{2}\sqrt[3]{3} \end{aligned}$$

Now we solve these equations for $\sqrt{2}$ and $\sqrt[3]{3}$.

	1	$\sqrt{2}$	$\sqrt[3]{3}$	$\sqrt{2}\sqrt[3]{3}$	$\sqrt[3]{9}$	$\sqrt{2}\sqrt[3]{9}$
1	1	0	0	0	0	0
α	0	1	1	0	0	0
α^2	2	0	0	2	1	0
α^3	3	2	6	0	0	3
α^4	4	12	3	$ \begin{array}{c} 0 \\ 0 \\ 2 \\ 0 \\ 8 \\ 15 \end{array} $	12	0
α^5	60	4	20	15	0	20

Solving these by row reduction gives:

$$\sqrt[3]{3} = \frac{1}{791} (1020 - 36\alpha + 540\alpha^2 + 320\alpha^3 - 45\alpha^4 - 48\alpha^5)$$

and therefore

$$\sqrt{2} = \frac{1}{791}(-1020 + 825\alpha - 540\alpha^2 - 320\alpha^3 + 45\alpha^4 + 48\alpha^5)$$

Theoretical Questions

4. Show that if E is a finite extension of F, and E is a splitting field over F, then E is the splitting field of a single polynomial over F.

Pick a basis $\alpha_1, \ldots, \alpha_n$ for E over F. Let $f_i = \operatorname{Irr}(\alpha_i, F)$. Now it is clear that E is the splitting field for $\{f_1, f_2, \ldots, f_n\}$. (This set could have fewer than n elements, since some of the f_i might be repeated.) Now this means that E is the splitting field for the product $f_1 f_2 \cdots f_n$, which is a single polynomial over F.

5. Show that if E is a splitting field over F, then for any element $\alpha \in E$, E contains all conjugates of α over F.

Let $\alpha \in E$, and let $\alpha' \in \overline{F}$ be a conjugate of α . Then we have the isomorphism $\psi_{\alpha,\alpha'}$ from E to a subfield of \overline{F} . This extends to an automorphism of \overline{F} leaving F fixed. Since E is a splitting field, this induces an automorphism of E. This means that $\psi_{\alpha,\alpha'}(\alpha) = \alpha'$ is in E.

6. Let E be a splitting field of an irreducible polynomial f(x) over F. Let σ be an automorphism of E that leaves F fixed.

(a) Show that σ induces a permutation of the zeros of f(x).

We know that if α is a zero of f(x) and $\sigma(\alpha) = \alpha'$, then $f(\alpha') = \sigma(f(\alpha)) = \sigma(0) = 0$, so α' must be a zero of f. Therefore, restricting σ to zeros of f gives a function from zeros of f to zeros of f. This function is one-to-one, since σ is, and since the set of zeros of f is finite, this function must also be onto, so it must be a permutation of the zeros of f.

(b) Show that if σ' is another automorphism of E that leaves f fixed and induces the same permutation on the zeros of f(x) as σ , then $\sigma' = \sigma$.

Consider the subset $S = \{x \in E | \sigma(x) = \sigma'(x)\}$. This set contains F and all the zeros of f. We now want to show that it is a subfield. Since Eis the smallest field that contains F and all zeros of f, this will prove that S = E. It is clear that if $\sigma(x) = \sigma'(x)$ and $\sigma(y) = \sigma'(y)$, then we must have $\sigma(x + y) = \sigma(x) + \sigma(y) = \sigma'(x) + \sigma'(y) = \sigma'(x + y)$, and similarly $\sigma(xy) = \sigma(x)\sigma(y) = \sigma'(x)\sigma'(y) = \sigma'(xy)$. We need to check that if $x \neq 0$, then $\sigma(x^{-1}) = \sigma'(x^{-1})$. However, we know that $\sigma(x^{-1}) = \sigma(x)^{-1} = \sigma'(x)^{-1} = \sigma'(x^{-1})$.

7. Show that if E is an algebraic extension of a perfect field F, then E is perfect.

Suppose E is not perfect, and that E' is a finite extension of E which is not separable over E. There must be some $\alpha \in E'$ which is not separable over E. Now let $f = \operatorname{Irr}(\alpha, F)$ (this exists because E is algebraic over f, and α is algebraic over E), and let $g = \operatorname{Irr}(\alpha, E)$. Now clearly f is also a polynomial in E[x], and α is a zero of f, so f is divisible by g in E[x]. However, in E'[x], g is divisible by $(x - \alpha)^2$, so f must also be divisible by $(x - \alpha)^2$, so α is not separable over F. This means that $F(\alpha)$ is a finite, but not separable extension of F. This contradicts our assumption that F is perfect.

8. Let K be a field extension of F, and let L be a field extension of K. Let $\alpha \in L$ be algebraic over F. Show that $[K(\alpha) : K] \leq [F(\alpha) : F]$.

We know that $\{1, \alpha, \alpha^2, \ldots, \alpha^n\}$ is a basis for $K(\alpha)$ over K, for some n. Now if $\{1, \alpha, \alpha^2, \ldots, \alpha^n\}$ are not independent elements over F, then α is a zero of some polynomial f of degree at most n over F. Now f is also a polynomial over K, and α is still a zero of f over K, so $\{1, \alpha, \alpha^2, \ldots, \alpha^n\}$ are not linearly independent over K, contradicting our assumption that they are a basis for $K(\alpha)$ over K.

Bonus Questions

9. For an infinite algebraic field extension, we will say that the extension is separable if every element of the larger field is separable over the smaller field. Show that if E is a separable extension of F and K is a separable extension of E, then K is a separable extension of F.

Let $\alpha \in K$. We need to show that α is separable over F. However, we know that α is separable over E, and E is separable over F. We will show that $F(\alpha)$ is separable over F. Let $f = \operatorname{Irr}(\alpha, F)$ and $g = \operatorname{Irr}(\alpha, E)$. Since f is a polynomial in E[x], and α is a zero of f, we must have that g divides f, so f = gh for some $h \in E[x]$. Since $(x - \alpha)^2$ divides f in K[x], but does not divide g, we must have that $(x - \alpha)$ divides h. Since g is the smallest polynomial that has α as a zero, we must have that g divides h, so h = gk, and $f = g^2k$. Now consider the splitting field L for f over F, and

consider $L \cap E$. Clearly, $g \in L[x]$, so we must have $g \in (L \cap E)[x]$. Since E is a separable extension of F, we must have that $(L \cap E)$ is a separable extension of F. Furthermore, since every element of L is separable over E, and L is a splitting field over $(L \cap E)$, for any $\beta \in L$, we must have $Irr(\beta, E) \in L[x]$, since this polynomial is a product of the linear factors $(x - \beta_i)$, all of which are in L[x]. Therefore, $g \in (L \cap E)[x]$, and since g has no repeated zeros, we have shown that L is separable over $L \cap E$. Therefore, L is separable over F, so α is separable over F.