MATH 3030, Abstract Algebra Winter 2013 Toby Kenney Homework Sheet 16 Model Solutions

Basic Questions

1. Let f be an irreducible quartic (degree 4) polynomial over a perfect field F. Let K be a splitting field for f over F. Let the zeros of f in K be α , β , γ and δ .

(a) What is the orbit of $\alpha\beta + \gamma\delta$ under G(K/F)?

G(K/F) induces permutations on $\{\alpha, \beta, \gamma, \delta\}$. Under the symmetric group on this set, the orbit of $\alpha\beta + \gamma\delta$ is $\{\alpha\beta + \gamma\delta, \alpha\gamma + \beta\delta, \alpha\delta + \beta\gamma\}$.

(b) [bonus] If $f(x) = x^4 + ax^3 + bx^2 + cx + d$, what is $Irr(\alpha\beta + \gamma\delta, F)$?

Since F is perfect, $Irr(\theta, F)$ is the product $\Pi_{\theta'}(x - \theta')$ over all conjugate θ' of θ . In this case, this product is:

$$(x - (\alpha\beta + \gamma\delta))(x - (\alpha\gamma + \beta\delta))(x - (\alpha\delta + \beta\gamma))$$

= $x^3 - (\alpha\beta + \gamma\delta + \alpha\gamma + \beta\delta + \alpha\delta + \beta\gamma)x^2$
+ $((\alpha\beta + \gamma\delta)(\alpha\gamma + \beta\delta) + (\alpha\beta + \gamma\delta)(\alpha\delta + \beta\gamma) + (\alpha\gamma + \beta\delta)(\alpha\delta + \beta\gamma))x$
 $-(\alpha\beta + \gamma\delta)(\alpha\gamma + \beta\delta)(\alpha\delta + \beta\gamma)$

We need to evaluate the coefficients in terms of the elementary symmetric functions of α , β , γ and δ . The first is easy — $(\alpha\beta + \gamma\delta + \alpha\gamma + \beta\delta + \alpha\delta + \beta\gamma)$ is a elementary symmetric function — it is the coefficient b in the original polynomial.

The other products are calculated as

$$\begin{aligned} ((\alpha\beta+\gamma\delta)(\alpha\gamma+\beta\delta)+(\alpha\beta+\gamma\delta)(\alpha\delta+\beta\gamma)+(\alpha\gamma+\beta\delta)(\alpha\delta+\beta\gamma)) \\ &=(\alpha+\beta+\gamma+\delta)(\alpha\beta\gamma+\alpha\beta\delta+\alpha\gamma\delta+\beta\gamma\delta)-4\alpha\beta\gamma\delta \\ &=ac-4d \end{aligned}$$

$$\begin{aligned} (\alpha\beta + \gamma\delta)(\alpha\gamma + \beta\delta)(\alpha\delta + \beta\gamma) \\ &= \alpha\beta\gamma\delta(\alpha^2 + \beta^2 + \gamma^2 + \delta^2) + (\alpha^2\beta^2\gamma^2 + \alpha^2\beta^2\delta^2 + \alpha^2\gamma^2\delta^2 + \beta^2\gamma^2\delta^2) \\ &= d(a^2 - 2b) + c^2 - 2db \end{aligned}$$

This gives that $\operatorname{Irr}(\alpha\beta + \gamma\delta, F) = x^3 - bx^2 + (ac - 4d)x - (d(a^2 - 4b) + c^2).$

2. Write $\frac{1}{a^2} + \frac{1}{b^2} + \frac{1}{c^2}$ as a rational function in the elementary symmetric functions a + b + c, ab + ac + bc and abc.

We see that $\frac{1}{a^2} + \frac{1}{b^2} + \frac{1}{c^2} = \frac{a^2b^2 + b^2c^2 + a^2c^2}{(abc)^2}$, so we just need to express $a^2b^2 + b^2c^2 + a^2c^2$ as a function of these elementary symmetric functions. We start by trying $(ab + bc + ac)^2$. This gives $a^2b^2 + b^2c^2 + a^2c^2 + 2(ab^2c + a^2bc + abc^2) = a^2b^2 + b^2c^2 + a^2c^2 + 2abc(a + b + c)$, so we deduce that

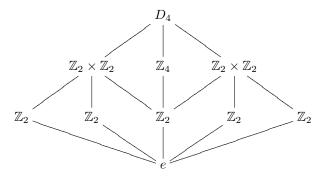
$$\frac{1}{a^2} + \frac{1}{b^2} + \frac{1}{c^2} = \frac{(ab+bc+ac)^2 - 2abc(a+b+c)}{(abc)^2}$$

3. What is the order of G(GF(64)/GF(4))?

We know that GF(4) is perfect, so GF(64) is a separable extension, and a splitting field. Therefore, we know that |G(GF(64)/GF(4))| = [GF(64) : GF(4)] = 3.

4. How many extension fields of \mathbb{Q} are contained in the field $\mathbb{Q}(\sqrt[4]{3},i)$?

 $\mathbb{Q}(\sqrt[4]{3}, i)$ is the splitting field of $x^4 - 3$, so it is a normal extension of \mathbb{Q} . The zeros of $x^4 - 3$ are $\{\sqrt[4]{3}, -\sqrt[4]{3}, i\sqrt[4]{3}, -i\sqrt[4]{3}\}$. The automorphisms σ of $\mathbb{Q}(\sqrt[4]{3}, i)$ are entirely determined by $\sigma(\sqrt[4]{3})$ and $\sigma(i)$. There are 4 possibilities for $\sigma(\sqrt[4]{3}$ and 2 possibilities for $\sigma(i)$, so there are 8 automorphisms in total. This means that $G(\mathbb{Q}(\sqrt[4]{3}, i)/\mathbb{Q})$ is isomorphic to the dihedral group D_4 . The subgroup lattice of D_4 looks like:



The extension fields of \mathbb{Q} contained in $\mathbb{Q}(\sqrt[4]{3}, i)$ correspond to the subgroups of D_4 , so there are 10 in total (including \mathbb{Q} and $\mathbb{Q}(\sqrt[4]{3}, i)$).

[The extension fields are: $\mathbb{Q}, \mathbb{Q}(\sqrt{3}), \mathbb{Q}(i), \mathbb{Q}(\sqrt{3}i), \mathbb{Q}(\sqrt{3}i), \mathbb{Q}(\sqrt[4]{3}), \mathbb{Q}(\sqrt[4]{3}), \mathbb{Q}(\sqrt[4]{3}(1-i)), \mathbb{Q}(\sqrt[4]{3}i)$ and $\mathbb{Q}(\sqrt[4]{3}i)$.]

Theoretical Questions

5. Let E be a finite normal extension of F. Let $\alpha \in E$. Define the norm of α over F by:

$$N_{E/F}(\alpha) = \prod_{\sigma \in G(E/F)} \sigma(\alpha)$$

and the trace of α over F by:

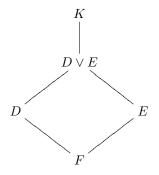
$$Tr_{E/F}(\alpha) = \sum_{\sigma \in G(E/F)} \sigma(\alpha)$$

Show that $N_{E/F}(\alpha)$ and $Tr_{E/F}(\alpha)$ are elements of F.

Let $\tau \in G(E/F)$, and consider $\tau(N_{E/F}(\alpha)) = \prod_{\sigma \in G(E/F)} \tau \sigma(\alpha)$. Since left multiplication by τ gives a permutation on G(E/F), we see that $\tau(N_{E/F}(\alpha)) = N_{E/F}(\alpha)$, that is, $N_{E/F}(\alpha)$ is in the fixed field of G(E/F), which by the Galois correspondence is F. Therefore, we have shown that $N_{E/F}(\alpha) \in F$.

Similarly, for and $\tau \in G(E/F)$, $\tau(\operatorname{Tr}_{E/F}(\alpha)) = \sum_{\sigma \in G(E/F)} \tau \sigma(\alpha) = \operatorname{Tr}_{E/F}(\alpha)$, so $\operatorname{Tr}_{E/F}(\alpha)$ is in the fixed field of G(E/F), so it is in F.

6. Let D and E be two extension fields of F. Let K be an extension field of F containing both D and E. The join D ∨ E of D and E is the smallest subfield of K that contains both D and E as subfields — see the following diagram:



Describe $G(K/(D \vee E))$ in terms of G(K/D) and G(K/E).

 $G(K/D \vee E) = G(K/D) \cap G(K/E)$. To see this, we see that any $\sigma \in G(K/D) \cap G(K/E)$ must fix D and E, and since the set of fixed elements is a field, it must fix the smallest subfield containing both D and E, which is $D \vee E$. This shows that $G(K/D) \cap G(K/E) \subseteq G(K/D \vee E)$. On the other hand, if $\sigma \in G(K/(D \vee E))$, then it fixes $D \vee E$, so it fixes all subfields of $D \vee E$, which includes D and E. Therefore, we have $\sigma \in G(K/D)$ and $\sigma \in G(K/E)$, so we have shown $G(K/D \vee E) \subseteq G(K/D) \cap G(K/E)$.

7. Let f be an irreducible monic polynomial over a field F, and let K be a splitting field for f over F. Let the zeros of f in K be $\alpha_1, \ldots, \alpha_n$. Let $\Delta(f) = \prod_{i < j} (\alpha_i - \alpha_j)$. Show that $(\Delta(f))^2 \in F$.

Consider the set S of automorphisms in G(K/F) that leave $(\Delta(f))^2$ fixed. For any $\sigma \in G(K/F)$, we know that σ induces a permutation on the α_i , but $(\Delta(f))^2$ is a symmetric function in the α_i , so it is fixed by any permutation of the α_i . Therefore, $(\Delta(f))^2$ is in the fixed field of G(K/F), which is F.