MATH 3030, Abstract Algebra

Winter 2013
Toby Kenney
Homework Sheet 16
Model Solutions

Basic Questions

1. Let f be an irreducible quartic (degree 4) polynomial over a perfect field F. Let K be a splitting field for f over F. Let the zeros of f in K be α, β, γ and δ.
(a) What is the orbit of $\alpha \beta+\gamma \delta$ under $G(K / F)$?
$G(K / F)$ induces permutations on $\{\alpha, \beta, \gamma, \delta\}$. Under the symmetric group on this set, the orbit of $\alpha \beta+\gamma \delta$ is $\{\alpha \beta+\gamma \delta, \alpha \gamma+\beta \delta, \alpha \delta+\beta \gamma\}$.
(b) [bonus] If $f(x)=x^{4}+a x^{3}+b x^{2}+c x+d$, what is $\operatorname{Irr}(\alpha \beta+\gamma \delta, F)$?

Since F is perfect, $\operatorname{Irr}(\theta, F)$ is the product $\Pi_{\theta^{\prime}}\left(x-\theta^{\prime}\right)$ over all conjugate θ^{\prime} of θ. In this case, this product is:

$$
\begin{array}{r}
(x-(\alpha \beta+\gamma \delta))(x-(\alpha \gamma+\beta \delta))(x-(\alpha \delta+\beta \gamma)) \\
=x^{3}-(\alpha \beta+\gamma \delta+\alpha \gamma+\beta \delta+\alpha \delta+\beta \gamma) x^{2} \\
+((\alpha \beta+\gamma \delta)(\alpha \gamma+\beta \delta)+(\alpha \beta+\gamma \delta)(\alpha \delta+\beta \gamma)+(\alpha \gamma+\beta \delta)(\alpha \delta+\beta \gamma)) x \\
-(\alpha \beta+\gamma \delta)(\alpha \gamma+\beta \delta)(\alpha \delta+\beta \gamma)
\end{array}
$$

We need to evaluate the coefficients in terms of the elementary symmetric functions of α, β, γ and δ. The first is easy - $(\alpha \beta+\gamma \delta+\alpha \gamma+\beta \delta+\alpha \delta+\beta \gamma)$ is a elementary symmetric funtion - it is the coefficient b in the original polynomial.
The other products are calculated as

$$
\begin{aligned}
& ((\alpha \beta+\gamma \delta)(\alpha \gamma+\beta \delta)+(\alpha \beta+\gamma \delta)(\alpha \delta+\beta \gamma)+(\alpha \gamma+\beta \delta)(\alpha \delta+\beta \gamma)) \\
& =(\alpha+\beta+\gamma+\delta)(\alpha \beta \gamma+\alpha \beta \delta+\alpha \gamma \delta+\beta \gamma \delta)-4 \alpha \beta \gamma \delta \\
& =a c-4 d \\
& \\
& \begin{array}{r}
(\alpha \beta+\gamma \delta)(\alpha \gamma+\beta \delta)(\alpha \delta+\beta \gamma) \\
=\alpha \beta \gamma \delta\left(\alpha^{2}+\beta^{2}+\gamma^{2}+\delta^{2}\right)+\left(\alpha^{2} \beta^{2} \gamma^{2}+\alpha^{2} \beta^{2} \delta^{2}+\alpha^{2} \gamma^{2} \delta^{2}+\beta^{2} \gamma^{2} \delta^{2}\right) \\
=d\left(a^{2}-2 b\right)+c^{2}-2 d b
\end{array}
\end{aligned}
$$

This gives that $\operatorname{Irr}(\alpha \beta+\gamma \delta, F)=x^{3}-b x^{2}+(a c-4 d) x-\left(d\left(a^{2}-4 b\right)+c^{2}\right)$.
2. Write $\frac{1}{a^{2}}+\frac{1}{b^{2}}+\frac{1}{c^{2}}$ as a rational function in the elementary symmetric functions $a+b+c, a b+a c+b c$ and $a b c$.
We see that $\frac{1}{a^{2}}+\frac{1}{b^{2}}+\frac{1}{c^{2}}=\frac{a^{2} b^{2}+b^{2} c^{2}+a^{2} c^{2}}{(a b c)^{2}}$, so we just need to express $a^{2} b^{2}+b^{2} c^{2}+a^{2} c^{2}$ as a function of these elementary symmetric functions. We start by trying $(a b+b c+a c)^{2}$. This gives $a^{2} b^{2}+b^{2} c^{2}+a^{2} c^{2}+2\left(a b^{2} c+\right.$ $\left.a^{2} b c+a b c^{2}\right)=a^{2} b^{2}+b^{2} c^{2}+a^{2} c^{2}+2 a b c(a+b+c)$, so we deduce that

$$
\frac{1}{a^{2}}+\frac{1}{b^{2}}+\frac{1}{c^{2}}=\frac{(a b+b c+a c)^{2}-2 a b c(a+b+c)}{(a b c)^{2}}
$$

3. What is the order of $G(G F(64) / G F(4))$?

We know that $\mathrm{GF}(4)$ is perfect, so $\mathrm{GF}(64)$ is a separable extension, and a splitting field. Therefore, we know that $|G(G F(64) / G F(4))|=[G F(64)$: $G F(4)]=3$.
4. How many extension fields of \mathbb{Q} are contained in the field $\mathbb{Q}(\sqrt[4]{3}, i)$?
$\mathbb{Q}(\sqrt[4]{3}, i)$ is the splitting field of $x^{4}-3$, so it is a normal extension of \mathbb{Q}. The zeros of $x^{4}-3$ are $\{\sqrt[4]{3},-\sqrt[4]{3}, i \sqrt[4]{3},-i \sqrt[4]{3}\}$. The automorphisms σ of $\mathbb{Q}(\sqrt[4]{3}, i)$ are entirely determined by $\sigma(\sqrt[4]{3})$ and $\sigma(i)$. There are 4 possibilities for $\sigma(\sqrt[4]{3}$ and 2 possibilities for $\sigma(i)$, so there are 8 automorphisms in total. This means that $G(\mathbb{Q}(\sqrt[4]{3}, i) / \mathbb{Q})$ is isomorphic to the dihedral group D_{4}. The subgroup lattice of D_{4} looks like:

The extension fields of \mathbb{Q} contained in $\mathbb{Q}(\sqrt[4]{3}, i)$ correspond to the subgroups of D_{4}, so there are 10 in total (including \mathbb{Q} and $\left.\mathbb{Q}(\sqrt[4]{3}, i)\right)$.
[The extension fields are: $\mathbb{Q}, \mathbb{Q}(\sqrt{3}), \mathbb{Q}(i), \mathbb{Q}(\sqrt{3} i), \mathbb{Q}(\sqrt{3}, i), \mathbb{Q}(\sqrt[4]{3}), \mathbb{Q}(\sqrt[4]{3}(1-$ $i)), \mathbb{Q}(\sqrt[4]{3}(1+i)), \mathbb{Q}(\sqrt[4]{3} i)$ and $\mathbb{Q}(\sqrt[4]{3}, i)$.

Theoretical Questions

5. Let E be a finite normal extension of F. Let $\alpha \in E$. Define the norm of α over F by:

$$
N_{E / F}(\alpha)=\Pi_{\sigma \in G(E / F)} \sigma(\alpha)
$$

and the trace of α over F by:

$$
T r_{E / F}(\alpha)=\sum_{\sigma \in G(E / F)} \sigma(\alpha)
$$

Show that $N_{E / F}(\alpha)$ and $\operatorname{Tr}_{E / F}(\alpha)$ are elements of F.
Let $\tau \in G(E / F)$, and consider $\tau\left(N_{E / F}(\alpha)\right)=\Pi_{\sigma \in G(E / F)} \tau \sigma(\alpha)$. Since left multiplication by τ gives a permutation on $G(E / F)$, we see that $\tau\left(N_{E / F}(\alpha)\right)=N_{E / F}(\alpha)$, that is, $N_{E / F}(\alpha)$ is in the fixed field of $G(E / F)$, which by the Galois correspondence is F. Therefore, we have shown that $N_{E / F}(\alpha) \in F$.
Similarly, for and $\tau \in G(E / F), \tau\left(\operatorname{Tr}_{E / F}(\alpha)\right)=\sum_{\sigma \in G(E / F)} \tau \sigma(\alpha)=$ $\operatorname{Tr}_{E / F}(\alpha)$, so $\operatorname{Tr}_{E / F}(\alpha)$ is in the fixed field of $G(E / F)$, so it is in F.
6. Let D and E be two extension fields of F. Let K be an extension field of F containing both D and E. The join $D \vee E$ of D and E is the smallest subfield of K that contains both D and E as subfields - see the following diagram:

Describe $G(K /(D \vee E))$ in terms of $G(K / D)$ and $G(K / E)$.
$G(K / D \vee E)=G(K / D) \cap G(K / E)$. To see this, we see that any $\sigma \in$ $G(K / D) \cap G(K / E)$ must fix D and E, and since the set of fixed elements is a field, it must fix the smallest subfield containing both D and E, which is $D \vee E$. This shows that $G(K / D) \cap G(K / E) \subseteq G(K / D \vee E)$. On the other hand, if $\sigma \in G(K /(D \vee E))$, then it fixes $D \vee E$, so it fixes all subfields of $D \vee E$, which includes D and E. Therefore, we have $\sigma \in G(K / D)$ and $\sigma \in G(K / E)$, so we have shown $G(K / D \vee E) \subseteq G(K / D) \cap G(K / E)$.
7. Let f be an irreducible monic polynomial over a field F, and let K be a splitting field for f over F. Let the zeros of f in K be $\alpha_{1}, \ldots, \alpha_{n}$. Let $\Delta(f)=\Pi_{i<j}\left(\alpha_{i}-\alpha_{j}\right)$. Show that $(\Delta(f))^{2} \in F$.

Consider the set S of automorphisms in $G(K / F)$ that leave $(\Delta(f))^{2}$ fixed. For any $\sigma \in G(K / F)$, we know that σ induces a permutation on the α_{i}, but $(\Delta(f))^{2}$ is a symmetric function in the α_{i}, so it is fixed by any permutation of the α_{i}. Therefore, $(\Delta(f))^{2}$ is in the fixed field of $G(K / F)$, which is F.

