
MATH 3030, Abstract Algebra
FALL 2012
Toby Kenney

Homework Sheet 4
Due: Wednesday 17th October: 3:30 PM

Basic Questions

1. In S4, let H be the subgroup of permutations that fix 4. What is the left

coset of H containing the permutation

(
1 2 3 4
2 4 1 3

)
?

This is the set of permutations σ such that σ(4) = 3, that is:

{(
1 2 3 4
1 2 4 3

)
,

(
1 2 3 4
1 4 2 3

)
,

(
1 2 3 4
4 1 2 3

)
,

(
1 2 3 4
2 1 4 3

)
,(

1 2 3 4
2 4 1 3

)
,

(
1 2 3 4
4 2 1 3

)}
2. Find the index of 〈4〉 in Z.

The cosets of 〈4〉 are {4n|n ∈ Z}, {4n + 1|n ∈ Z}, {4n + 2|n ∈ Z} and
{4n+ 3|n ∈ Z}, so the index is 4.

3. Find the index of 〈(0, 2), (1, 3)〉 in Z× Z.

The cosets in question are represented by (0, 0),(0, 1),(1, 0),(1, 1),(2, 0) and
(2, 1), so the index is 6.

4. Show that the group D6 of symmetries of the regular hexagon is isomorphic
to the direct product S3 × Z2.

S3 is the group of symmetries of an equilateral triangle. We can choose
three alternate vertices around the hexagon, and consider the symmetries
which fix those three vertices. All symmetries of this triangle are symme-
tries of the whole hexagon, so we have expressed S3 as a subgroup of D6.
We need to find an element of order 2 which commutes with all elements
in this subgroup. We see that rotation by 180◦ about the centre of the
hexagon is such an element.

5. (a) Show that a group of order 30 can have at most 2 subgroups of order
15. [Hint: the intersection of two subgroups is a subgroup. Use inclusion-
exclusion principle to calculate the number of elements in the union of the
subgroups.]

Let G have order 30. Let H1, H2 and H3 be distinct subgroups of order
15. The intersections H1 ∩ H2, H1 ∩ H3 and H2 ∩ H3 are subgroups of
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H1 or H2, so their order must divide 15. Therefore, the largest order they
can possibly have is 5. Also, since the identity is contained in all three
subgroups, we must have that Therefore, we have that |H1 ∪H2 ∪H3| >
|H1|+ |H2|+ |H3| − |H1 ∩H2| − |H2 ∩H3| − |H2 ∩H3|+ |H1 ∩H2 ∩H3| >
15+15+15−5−5−5+1 = 31, which is impossible since |H1∪H2∪H3| ⊆ G.

(b) [bonus] Show that in fact a group of order 30 can have only one sub-
group of order 15.

Suppose that H1 and H2 are two distinct subgroups of G, with |G| = 30
and |H1| = |H2| = 15. We know that |H1∩H2| 6 5, so (H1 : H1∩H2) > 3.
Let x, y and z be representatives of three different left cosets of H1 ∩H2

in H1. That is, none of x−1y, x−1z or y−1z is in H2 ∩H1. However, since
x, y and z are all in H1, and H1 is a subgroup, none of x−1y, x−1z or
y−1z is in H2. That is, x, y and z must be in different cosets of H2 in G.
However, (G : H2) = 30

15 = 2, so this is impossible. Therefore, there can
be at most one subgroup of G of order 15.

6. What is the order of (3, 7) in Z6 × Z21?

3 has order 2 in Z6, and 7 has order 3 in Z21, so (3, 7) has order 3× 2 = 6
in Z6 × Z21.

Standard Questions

7. For subgroups H and K of G, show that (H : H ∩K) 6 (G : K).

Pick a set L containing one representative of every left coset of H ∩K in
H. Now for any two element x and y of L, x and y are elements of H, so
x−1y ∈ H, but they are in different left cosets of H∩K, so x−1y 6∈ H∩K.
However, this means x−1y 6∈ K, so x and y are in different cosets of K in
G, which proves that (H : H ∩K) 6 (G : K).

8. Show that a group of even order must have an element of order 2.

If x has order 2n for some n, then xn has order 2, so we just need to show
that the group must have an element of even order. G is the union of all
its cyclic subgroups, and the intersection of any two cyclic subgroups is
another cyclic subgroup, so suppose that the cyclic subgroups of G are
H1, . . . ,Hk and that all of them have odd order. Let Ki be the set of
non-identity elements of Hi. If all elements of G have odd order, the
intersection of any set of the Ki must have odd order, and the set of non-
identity elements of G is the union of all the Ki. Now by the inclusion-
exclusion principle, we have that |G|− 1 = |K1|+ · · ·+ |Kn|− |K1 ∩K2|−
· · · − |Kk−1 ∩ Kk| + · · · + (−1)k|K1 ∩ · · · ∩ Kk|. However, all the terms
in this sum are even, so |G| − 1 must be even, and therefore, |G| must be
odd.
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9. Prove Theorem 10.14 that for subgroups K 6 H 6 G, if (G : H) and
(H : K) are both finite, then (G : K) = (G : H)(H : K).

Let x1, . . . , xn be a set of coset representatives ofH inG, and let y1, . . . , ym
be a set of coset representatives of K in H. We will show that {xiyj |1 6
i 6 n, 1 6 j 6 m} is a set of left coset representatives of K in G. First we
show that any two of these elements are in different cosets of K. That is,
if (xiyj)

−1xkyl ∈ K then i = k and j = l. We note that if (xiyj)
−1xkyl =

yj
−1xi

−1xkyl ∈ H, then since yj and yl are both in H, we must have
xi
−1xk ∈ H, so since the set {x1, . . . , xn} is a set of coset representatives,

we must have i = k. Now we have that yj
−1x−1i xiyl = yj

−1yl ∈ K, which
gives j = l as required.

Finally, we need to show that any element of G is in the same coset
as one of the products xiyj . Now any element z ∈ G must be in the
same coset of H as some xi. That is, for some i, we have xi

−1z ∈ H.
Now since xi

−1z ∈ H, it must be in one of the cosets of K in H. That
is, it must have yj

−1(xi
−1z) ∈ K for some j. However, we now have

yj
−1(xi

−1z) = (yj
−1xi

−1)z = (xiyj)
−1z ∈ K for some i and j. That is, z

is in the same coset as some xiyj as required.

10. Find a bijection (one-to-one and onto map) between the left cosets of H
and the right cosets of H, and prove that it is a bijection.

One bijection is given by f(X) = {x−1|x ∈ X}. We need to show that f
sends left cosets to right cosets, and that it is a bijection. We will show that
f also sends right cosets to left cosets, and it is clear that f(f(X)) = X,
so that f must be a bijection between left and right cosets.

If X is a left coset of H, then {x−1|x ∈ X} is a right coset, since if
x, y ∈ X, then x−1(y−1)−1 = x−1y = (y−1x)−1 ∈ H, so that x−1 and y−1

are in the same right coset of H. On the other hand, suppose z is in the
same right coset of H as x−1. Now z(x−1)−1 = zx = (x−1z−1)−1 ∈ H.
Since H is a subgroup, we deduce that x−1z−1 ∈ H. This means that z−1

is in the same left coset of H as x as required.

11. Let H be a subgroup of G. Show that the set NG(H) = {x ∈ G|xH = Hx}
is a subgroup of G.

Let x, y ∈ NG(H). Now xyH = x(yH) = x(Hy) = (xH)y = Hxy,
so xy ∈ NG(H). Also x−1H = {x−1h|h ∈ H} = {x−1h−1|h ∈ H} =
{x−1hxx−1|h ∈ H} = {x−1kx−1|k ∈ Hx} = {x−1kx−1|k ∈ xH} =
{x−1xhx−1|h ∈ H} = {hx−1|h ∈ H} = Hx−1, so x−1 ∈ NG(H), so
NG(H) is a subgroup.

12. Suppose G is a finite group, with subgroups H and K such that |G| =
|H||K|, H ∩K = {e} and hk = kh for all h ∈ H and k ∈ K. Show that
G is isomorphic to H ×K.

Consider the set of elements {hk|h ∈ H, k ∈ K} of G. Suppose two
of these elements are equal, i.e. hk = h′k′ for elements h, h′ ∈ H and
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k, k′ ∈ K. We get kk′
−1

= h−1hkk′
−1

= h−1h′k′k′
−1

= h−1h′, but
kk′
−1 ∈ K and h−1h′ ∈ H, so this product must be in H∩K = {e}. That

is, we must have kk′
−1

= h−1h′ = e, or k = k′ and h = h′. Therefore, we
get that |{hk|h ∈ H, k ∈ K} = |H||K| = |G|, so G = {hk|h ∈ H, k ∈ K}.

We now form the isomorphism G
φ

//H × K by hk 7→ (h, k). By the
preceding argument, this is well-defined and a bijection. Furthermore, it is
a homomorphism because φ(hk)φ(h′k′) = (h, k)(h′, k′) = (hh′, kk′), while
φ((hk)(h′k′)) = φ(h(kh′)k′) = φ(h(h′k)k′) = φ(hh′kk′) = (hh′, kk′).

13. If G, H and K are finitely generated abelian groups and G×K is isomor-
phic to H ×K, prove that G is isomorphic to H.

By the structure theorem for finitely generated abelian groups, we have
that G ∼= Zi1 × · · · ×Zin ×Z× · · · ×Z, H ∼= Zj1 × · · · ×Zjm ×Z× · · · ×Z
and K ∼= Zk1 × · · ·×Zkl ×Z× · · ·×Z, where each ia, jb and kc is a prime
power. Furthermore, these descriptions are unique, and the descriptions
of G × H and G × K as these products must therefore be the same.
That is G × K ∼= Zi1 × · · · × Zin × Zk1 × · · · × Zkl × Z × · · · × Z and
H × K ∼= Zj1 × · · · × Zjm × Zk1 × · · · × Zkl × Z × · · · × Z. Since these
are isomorphic, we must have that {i1, . . . , in} = {j1, . . . , jm}, and the
number of copies of Z must be the same. This forces G ∼= H.

Bonus Questions

14. If G is a finitely generated abelian group, and H is a subgroup of G,
must H also be a finitely generated abelian group? Give a proof or a
counterexample.

15. (For students who know some Graph Theory) Hall’s marriage theorem
states

Given a graph G whose vertices can be partitioned into two
sets A and B of the same size, with all edges between one vertex
in A and one vertex in B, it is possible to find a matching (a set
of edges in the graph such that there is one edge at each vertex
in A and one edge at each vertex in B) if and only if for any set
A′ of vertices in A the set of vertices in B adjacent to at least
one vertex in A′ has at least as many elements as A′ and for
any set B′ of vertices in B the set of vertices in A adjacent to
at least one vertex in B′ has at least as many elements as B′.

[Using this or otherwise] Show that: given a finite group G and a subgroup
H, show that it is possible to choose a collection of elements of G with
exactly one in every left coset of H and exactly one in every right coset of
H.
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For the group G, form a bipartite graph whose vertices are the left cosets
of H and the right cosets of H, and with an edge from aH to Ha for any
a ∈ G. Consider a set of left cosets of H. The neighbours of this set are
the right cosets containing elements of the union of these left cosets. If
the number of left cosets is n, then the total number of elements in the
union is n|H|. This many elements cannot be contained in fewer than
n right cosets of H. Therefore there are at least as many neighbours as
in the set. The same argument works for sets of right cosets. Therefore,
the conditions for Hall’s marriage theorem hold, and we have a matching
where every left coset is paired with a right coset that has an element in
common with it. Selecting one of these elements for each left coset gives
a set of elements with exactly one from every left coset and exactly one
from every right coset.
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