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Basic Questions

1. Factorise f(x) = x4 + 3x3 + 2x2 + 9x− 3:

(a) over Z3.

Over Z3, we see that f(0) = 0, f(1) = 0, f(2) = 0, so we see that f(x)
factorises as f(x) = x2(x− 1)(x− 2).

(b) over Z6.

Over Z6, we see that f(0) = 3, f(1) = 0, f(2) = 3, f(3) = 0, f(4) = 3,
and f(5) = 0, so we deduce that f(x) = (x− 1)(x− 5)(x− 3)2.

(c) over Z.

Suppose that we can factor f over Z. Then we must have the product of
the constant terms in the factors equal to −3. Therefore, when we consider
the factors in Z6, only one of them can have constant term divisible by 3.
Therefore, the only possible factorisations in Z6 must have both (x − 3)
terms in the same factor. If we had a linear factor, it would need to be x±1,
but these are not factors, since f(1) = 12 and f(−1) = −12. Therefore,
if f factors over Z, then it must be as a product of two quadratics, one
of which is congruent to (x− 3)2, and the other of which is congruent to
(x−1)(x−5), modulo 6. That is, one factor must be x2−1+6ax, and the
other factor must be x2 + 3 + 6bx. Now by multiplying these factors, we
get x4+3x3+2x2+9x−3 = x4+6(a+b)x3+(2+36ab)x2+6(3a−b)x−3.
This gives (a + b) = 3

6 = 1
2 , which is not possible, so f is irreducible over

Z.

2. Show that f(x) = x4+x3+x2+x+1 is irreducible over Z. [Hint: consider
x = y + 1 and use Eisenstein’s criterion.]

If we substitute x = y+1, then we see that f(x) = (y+1)4+(y+1)3+(y+
1)2 +(y+1)+1 = y4 +5y3 +10y2 +10y+5 = g(y), which is an irreducible
polynomial in y by Eisenstein’s criterion. However, if f(x) were reducible,
then the same substitution x = y+1 would provide a factorisation of g(y),
which is impossible.

Alternatively: observe that (x − 1)f(x) = x5 − 1, so g(y) = (y+1)5−1
y =

y4 +5y3 +10y2 +10y+5. [This method allows the result to be generalised
to any other prime instead of 5.]
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3. Find all solutions to the equation x2 + 2x− 3 = 0 in Z21.

We can factor f(x) = x2 + 2x− 3 as f(x) = (x− 1)(x + 3). We therefore
want to solve (x − 1)(x + 3) = 0 in Z21. There are the obvious solutions
x = 1 and x = −3 = 18, but we also have the non-trivial zero products,
where one factor is divisible by 3 and the other is divisible by 7. We
consider the four cases:

x + 3 = 7: x = 4, x− 1 = 3 is divisible by 3, so this is a solution.

x− 1 = 7: x = 8, x+ 3 = 11 is not divisible by 3, so this is not a solution.

x− 1 = 14: x = 15, x + 3 = 18 is divisible by 3, so this is a solution.

x + 3 = 14: x = 11, x − 1 = 10 is not divisible by 3, so this is not a
solution.

Therefore, the solutions are x = 1, x = 4, x = 15 and x = 18.

4. Find all prime numbers p such that x−4 is a factor of x4−2x3+3x2+x−2
in Zp[x].

x − 4 is a factor of f(x) if and only if f(4) = 0, so we need to find all
primes p such that f(4) = 44− 2× 43 + 3× 42 + 4− 2 = 178 ≡ 0 (mod p).
That is, we need all prime factors of 178, which are 2 and 89.

5. Find a generator for the multiplicative group of non-zero elements of Z19.

We know that there are 18 non-zero elements in Z19, so we are looking for
an element of order 18 in this group. The prime factors of 18 are 2 and 3
(repeated twice), so a non-zero element of Z19 generates the multiplicative
group of non-zero elements if and only if it does not occur as a square or
a cube. We calculate the following in Z19:

x x2 x3

1 1 1
2 4 8
3 9 8
4 16 7
5 6 11
6 17 7
7 11 1
8 7 18
9 5 7
10 5 12
11 7 1
12 11 18
13 17 12
14 6 8
15 16 12
16 9 11
17 4 11
18 1 18
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So the generators are 2, 3, 10, 13, 14, and 15.

6. Show that f(x) = x2 + 3x + 2 does not factorise uniquely over Z6.

In Z6, we have (x+ 1)(x+ 2) = f(x) = (x+ 4)(x+ 5), so the factorisation
is not unique.

7. Show that f(x) = x3 + 4x2 + 1 is irreducible in Z7. [Hint: if it is not
irreducible then it must have a linear factor.]

Since f(x) is cubic, then if it is not irreducible, then one of the factors
must be linear. But by the factor theorem, f(x) must have a zero in Z7.
However, we have:

x f(x)
0 1
1 6
2 4
3 1
4 3
5 2
6 4

So we see that f has no zeros, and is therefore irreducible.

Standard Questions

8. Show that if D is an integral domain, then so is D[x].

We already know that D[x] is a commutative ring, and the constant unity
function is the unit element, so we just need to show that D[x] has no zero
divisors. Suppose we have f(x)g(x) = 0 in D[x], then let f(x) = a1x

n +
a2x

n−1 + · · ·+an−1x+an, and g(x) = b1x
m + b2x

m−1 + · · ·+ bm−1x+ bm.
Now let ai and bj be the last non-zero coefficients. That is ai 6= 0, but
ak = 0 for all k > i, and bj 6= 0, but bk = 0 for all k > j. Now since
f(x)g(x) = 0, we must have that the coefficient of xn+m+2−i−j is zero.
However, this coefficient is aibj , so ai and bj must be zero-divisors in D,
contradicting the assumption that D is an integral domain.

9. Let R be a ring. (a) Show that the ring of functions from R to R is a ring
with pointwise addition and multiplication. That is:

(f + g)(x) = f(x) + g(x)

fg(x) = f(x)g(x)
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We need to check the axioms. These all follow from the corresponding
axioms for R. For example, 0 is the constantly 0 function. (−f)(x) =
−(f(x)). The axioms are all straightforward to check — for example, we
check associativity and commutativity of + and distributivity of multipli-
cation over addition:

• Commutativity: (f + g)(x) = f(x) + g(x) = g(x) + f(x) = (g+ f)(x)

• Associativity: ((f + g) +h)(x) = (f + g)(x) +h(x) = (f(x) + g(x)) +
h(x)) = f(x) + (g(x) + h(x)) = f(x) + (g + h)(x) = (f + (g + h))(x)

• Distributivity: (f(g+h))(x) = f(x)(g+h)(x) = f(x)(g(x)+h(x)) =
f(x)g(x) + f(x)h(x) = fg(x) + fh(x) = (fg + fh)(x)

(b) Show that the set of all functions describable by polynomials gives a
subring of the ring of all functions.

We need to show that the functions describable by polynomials are closed
under addition, multiplication and additive inverse, and include the con-
stantly 0 function.

The constantly 0 function is describable by the 0 polynomial. The sum
f + g is describable by the sum of polynomials describing f and g; the
additive inverse of f is describable by the additive inverse of a polynomial
describing f , and the product is describable by the product of polynomials
describing f and g.

(c) Show that this ring is not always isomorphic to the polynomial ring
R[x]. [Hint: let R be a finite field Zp for some prime p.]

If R is a finite field with n elements, then the number of functions from
R to R is finite with nn elements, while the number of elements in the
polynomial ring R[x] is infinite, so the two rings cannot be isomorphic.

10. Show that the remainder when a polynomial f(x) ∈ F [x] is divided by x−a
is f(a).

Consider g(x) = f(x) − f(a). Clearly, g(a) = 0, so x − a is a factor of
g(x). Let g(x) = (x− a)h(x). Now we have f(x) = (x− a)h(x) + f(a) as
required.

Bonus Questions
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