MATH 3030, Abstract Algebra
FALL 2012
Toby Kenney
Homework Sheet 9
Due: Wednesday 28th November: 3:30 PM

Basic Questions

1. Factorise $f(x)=x^{4}+3 x^{3}+2 x^{2}+9 x-3$:
(a) over \mathbb{Z}_{3}.

Over \mathbb{Z}_{3}, we see that $f(0)=0, f(1)=0, f(2)=0$, so we see that $f(x)$ factorises as $f(x)=x^{2}(x-1)(x-2)$.
(b) over \mathbb{Z}_{6}.

Over \mathbb{Z}_{6}, we see that $f(0)=3, f(1)=0, f(2)=3, f(3)=0, f(4)=3$, and $f(5)=0$, so we deduce that $f(x)=(x-1)(x-5)(x-3)^{2}$.
(c) over \mathbb{Z}.

Suppose that we can factor f over \mathbb{Z}. Then we must have the product of the constant terms in the factors equal to -3 . Therefore, when we consider the factors in \mathbb{Z}_{6}, only one of them can have constant term divisible by 3 . Therefore, the only possible factorisations in \mathbb{Z}_{6} must have both $(x-3)$ terms in the same factor. If we had a linear factor, it would need to be $x \pm 1$, but these are not factors, since $f(1)=12$ and $f(-1)=-12$. Therefore, if f factors over \mathbb{Z}, then it must be as a product of two quadratics, one of which is congruent to $(x-3)^{2}$, and the other of which is congruent to $(x-1)(x-5)$, modulo 6 . That is, one factor must be $x^{2}-1+6 a x$, and the other factor must be $x^{2}+3+6 b x$. Now by multiplying these factors, we get $x^{4}+3 x^{3}+2 x^{2}+9 x-3=x^{4}+6(a+b) x^{3}+(2+36 a b) x^{2}+6(3 a-b) x-3$. This gives $(a+b)=\frac{3}{6}=\frac{1}{2}$, which is not possible, so f is irreducible over \mathbb{Z}.
2. Show that $f(x)=x^{4}+x^{3}+x^{2}+x+1$ is irreducible over \mathbb{Z}. [Hint: consider $x=y+1$ and use Eisenstein's criterion.]
If we substitute $x=y+1$, then we see that $f(x)=(y+1)^{4}+(y+1)^{3}+(y+$ $1)^{2}+(y+1)+1=y^{4}+5 y^{3}+10 y^{2}+10 y+5=g(y)$, which is an irreducible polynomial in y by Eisenstein's criterion. However, if $f(x)$ were reducible, then the same substitution $x=y+1$ would provide a factorisation of $g(y)$, which is impossible.
Alternatively: observe that $(x-1) f(x)=x^{5}-1$, so $g(y)=\frac{(y+1)^{5}-1}{y}=$ $y^{4}+5 y^{3}+10 y^{2}+10 y+5$. [This method allows the result to be generalised to any other prime instead of 5.]
3. Find all solutions to the equation $x^{2}+2 x-3=0$ in \mathbb{Z}_{21}.

We can factor $f(x)=x^{2}+2 x-3$ as $f(x)=(x-1)(x+3)$. We therefore want to solve $(x-1)(x+3)=0$ in \mathbb{Z}_{21}. There are the obvious solutions $x=1$ and $x=-3=18$, but we also have the non-trivial zero products, where one factor is divisible by 3 and the other is divisible by 7 . We consider the four cases:
$x+3=7: x=4, x-1=3$ is divisible by 3 , so this is a solution.
$x-1=7: x=8, x+3=11$ is not divisible by 3 , so this is not a solution.
$x-1=14: x=15, x+3=18$ is divisible by 3 , so this is a solution.
$x+3=14: x=11, x-1=10$ is not divisible by 3 , so this is not a solution.

Therefore, the solutions are $x=1, x=4, x=15$ and $x=18$.
4. Find all prime numbers p such that $x-4$ is a factor of $x^{4}-2 x^{3}+3 x^{2}+x-2$ in $\mathbb{Z}_{p}[x]$.
$x-4$ is a factor of $f(x)$ if and only if $f(4)=0$, so we need to find all primes p such that $f(4)=4^{4}-2 \times 4^{3}+3 \times 4^{2}+4-2=178 \equiv 0(\bmod p)$. That is, we need all prime factors of 178 , which are 2 and 89 .
5. Find a generator for the multiplicative group of non-zero elements of \mathbb{Z}_{19}. We know that there are 18 non-zero elements in \mathbb{Z}_{19}, so we are looking for an element of order 18 in this group. The prime factors of 18 are 2 and 3 (repeated twice), so a non-zero element of \mathbb{Z}_{19} generates the multiplicative group of non-zero elements if and only if it does not occur as a square or a cube. We calculate the following in \mathbb{Z}_{19} :

x	x^{2}	x^{3}
1	1	1
2	4	8
3	9	8
4	16	7
5	6	11
6	17	7
7	11	1
8	7	18
9	5	7
10	5	12
11	7	1
12	11	18
13	17	12
14	6	8
15	16	12
16	9	11
17	4	11
18	1	18

So the generators are $2,3,10,13,14$, and 15 .
6. Show that $f(x)=x^{2}+3 x+2$ does not factorise uniquely over \mathbb{Z}_{6}.

In \mathbb{Z}_{6}, we have $(x+1)(x+2)=f(x)=(x+4)(x+5)$, so the factorisation is not unique.
7. Show that $f(x)=x^{3}+4 x^{2}+1$ is irreducible in \mathbb{Z}_{7}. [Hint: if it is not irreducible then it must have a linear factor.]
Since $f(x)$ is cubic, then if it is not irreducible, then one of the factors must be linear. But by the factor theorem, $f(x)$ must have a zero in \mathbb{Z}_{7}. However, we have:

x	$f(x)$
0	1
1	6
2	4
3	1
4	3
5	2
6	4

So we see that f has no zeros, and is therefore irreducible.

Standard Questions

8. Show that if D is an integral domain, then so is $D[x]$.

We already know that $D[x]$ is a commutative ring, and the constant unity function is the unit element, so we just need to show that $D[x]$ has no zero divisors. Suppose we have $f(x) g(x)=0$ in $D[x]$, then let $f(x)=a_{1} x^{n}+$ $a_{2} x^{n-1}+\cdots+a_{n-1} x+a_{n}$, and $g(x)=b_{1} x^{m}+b_{2} x^{m-1}+\cdots+b_{m-1} x+b_{m}$. Now let a_{i} and b_{j} be the last non-zero coefficients. That is $a_{i} \neq 0$, but $a_{k}=0$ for all $k>i$, and $b_{j} \neq 0$, but $b_{k}=0$ for all $k>j$. Now since $f(x) g(x)=0$, we must have that the coefficient of $x^{n+m+2-i-j}$ is zero. However, this coefficient is $a_{i} b_{j}$, so a_{i} and b_{j} must be zero-divisors in D, contradicting the assumption that D is an integral domain.
9. Let R be a ring. (a) Show that the ring of functions from R to R is a ring with pointwise addition and multiplication. That is:

$$
\begin{aligned}
(f+g)(x) & =f(x)+g(x) \\
f g(x) & =f(x) g(x)
\end{aligned}
$$

We need to check the axioms. These all follow from the corresponding axioms for R. For example, 0 is the constantly 0 function. $(-f)(x)=$ $-(f(x))$. The axioms are all straightforward to check - for example, we check associativity and commutativity of + and distributivity of multiplication over addition:

- Commutativity: $(f+g)(x)=f(x)+g(x)=g(x)+f(x)=(g+f)(x)$
- Associativity: $((f+g)+h)(x)=(f+g)(x)+h(x)=(f(x)+g(x))+$ $h(x))=f(x)+(g(x)+h(x))=f(x)+(g+h)(x)=(f+(g+h))(x)$
- Distributivity: $(f(g+h))(x)=f(x)(g+h)(x)=f(x)(g(x)+h(x))=$ $f(x) g(x)+f(x) h(x)=f g(x)+f h(x)=(f g+f h)(x)$
(b) Show that the set of all functions describable by polynomials gives a subring of the ring of all functions.
We need to show that the functions describable by polynomials are closed under addition, multiplication and additive inverse, and include the constantly 0 function.
The constantly 0 function is describable by the 0 polynomial. The sum $f+g$ is describable by the sum of polynomials describing f and g; the additive inverse of f is describable by the additive inverse of a polynomial describing f, and the product is describable by the product of polynomials describing f and g.
(c) Show that this ring is not always isomorphic to the polynomial ring $R[x]$. [Hint: let R be a finite field \mathbb{Z}_{p} for some prime p.]
If R is a finite field with n elements, then the number of functions from R to R is finite with n^{n} elements, while the number of elements in the polynomial ring $R[x]$ is infinite, so the two rings cannot be isomorphic.

10. Show that the remainder when a polynomial $f(x) \in F[x]$ is divided by $x-a$ is $f(a)$.
Consider $g(x)=f(x)-f(a)$. Clearly, $g(a)=0$, so $x-a$ is a factor of $g(x)$. Let $g(x)=(x-a) h(x)$. Now we have $f(x)=(x-a) h(x)+f(a)$ as required.

Bonus Questions

