MATH/STAT 3460, Intermediate Statistical Theory Winter 2014 Toby Kenney **Midterm Examination** Monday 3rd March 14:35–15:25

- The weight (in kg) of a certain species of rabbit is believed to follow a Normal distribution with mean 5 and variance 7e^{-2√a}. Eight of these rabbits are collected, and their weights are measured as 4.9, 6.8, 3.6, 8.1, 2.3, 3.1, 6.4, and 4.2. What is the maximum likelihood estimate for a?
- 2. In a trial for a new drug, the probability of a response to dose d is assumed to be $1 \frac{1}{1+e^{\alpha+\beta d}}$ for some α and β . The data from a study of the drug are given in the following table:

dose	0	1	2
number	26	23	21
number of responses	3	12	21

(a) Show that $\alpha = -2.40315$ and $\beta = 2.78828$ is the maximum likelihood estimate for α and β .

(b)[**Bonus**] Use a normal approximation to calculate a 10% likelihood region for (α, β) .

- 3. The remaining lifetime (in years) of a patient undergoing a certain kind of treatment is exponentially distributed with parameter λ . In a study which follows 10 patients for a period of 3 years, seven of the patients have lifetimes: 0.3, 0.8, 0.9, 1.4, 1.8, 2.5, and 2.9, while the remaining three patients survive to the end of the three-year period. What is the maximum likelihood estimate for λ ?
- 4. We observe two samples from a Poisson distribution with parameter λ . If the true value of λ is 0.7, what is the probability that this value lies within a 10% likelihood interval? [Calculate the exact coverage probability.]
- 5. The probability of a particular genetic condition is $p = \theta^2$. Let N be a sample from a binomial distribution with parameters 100 and θ . The MLE for p is $\left(\frac{N}{100}\right)^2$. What is the bias of this estimate?