MATH/STAT 3460, Intermediate Statistical Theory
 Winter 2014
 Toby Kenney
 Midterm Examination
 Monday 3rd March 14:35-15:25

1. The weight (in kg) of a certain species of rabbit is believed to follow a Normal distribution with mean 5 and variance $7 e^{-2 \sqrt{a}}$. Eight of these rabbits are collected, and their weights are measured as 4.9, 6.8, 3.6, 8.1, $2.3,3.1,6.4$, and 4.2. What is the maximum likelihood estimate for a ?
2. In a trial for a new drug, the probability of a response to dose d is assumed to be $1-\frac{1}{1+e^{\alpha+\beta d}}$ for some α and β. The data from a study of the drug are given in the following table:

dose	0	1	2
number	26	23	21
number of responses	3	12	21

(a) Show that $\alpha=-2.40315$ and $\beta=2.78828$ is the maximum likelihood estimate for α and β.
(b)[Bonus] Use a normal approximation to calculate a 10% likelihood region for (α, β).
3. The remaining lifetime (in years) of a patient undergoing a certain kind of treatment is exponentially distributed with parameter λ. In a study which follows 10 patients for a period of 3 years, seven of the patients have lifetimes: $0.3,0.8,0.9,1.4,1.8,2.5$, and 2.9 , while the remaining three patients survive to the end of the three-year period. What is the maximum likelihood estimate for λ ?
4. We observe two samples from a Poisson distribution with parameter λ. If the true value of λ is 0.7 , what is the probability that this value lies within a 10% likelihood interval? [Calculate the exact coverage probability.]
5. The probability of a particular genetic condition is $p=\theta^{2}$. Let N be a sample from a binomial distribution with parameters 100 and θ. The MLE for p is $\left(\frac{N}{100}\right)^{2}$. What is the bias of this estimate?

