MATH/STAT 3460, Intermediate Statistical Theory
 Winter 2014
 Toby Kenney
 Midterm Examination
 Model Solutions

Basic Questions

1. The weight (in kg) of a certain species of rabbit is believed to follow a Normal distribution with mean 5 and variance $7 e^{-2 \sqrt{a}}$. Eight of these rabbits are collected, and their weights are measured as 4.9, 6.8, 3.6, 8.1, 2.3, 3.1, 6.4, and 4.2. What is the maximum likelihood estimate for a ?

Let $\sigma=\sqrt{7} e^{-\sqrt{a}}$ be the standard deviation of the normal distribution. Then we have

$$
\begin{aligned}
l(\sigma) & =-8 \log (\sigma)-\frac{(4.9-5)^{2}+(6.8-5)^{2}+(3.6-5)^{2}+(8.1-5)^{2}+(2.3-5)^{2}+(3.1-5)^{2}+(6.4-5)^{2}+(4.2-5)^{2}}{2 \sigma^{2}} \\
& =-8 \log (\sigma)-\frac{28.32}{2 \sigma^{2}}
\end{aligned}
$$

The score function is therefore, $S(\sigma)=\frac{28.32}{\sigma^{3}}-\frac{8}{\sigma}$. Setting this equal to zero gives $\sigma^{2}=\frac{28.32}{8}=3.54$. The MLE for a is therefore given by $7 e^{-2 \sqrt{a}}=3.54$, or $a=\left(\frac{\log (0.50571)}{2}\right)^{2}=0.116207159$.
2. In a trial for a new drug, the probability of a response to dose d is assumed to be $1-\frac{1}{1+e^{\alpha+\beta d}}$ for some α and β. The data from a study of the drug are given in the following table:

dose	0	1	2
number	26	23	21
number of responses	3	12	21

(a) Show that $\alpha=-2.40315$ and $\beta=2.78828$ is the maximum likelihood estimate for α and β

The likelihood function is
$L(\alpha, \beta)=\left(1-\frac{1}{1+e^{\alpha}}\right)^{3}\left(\frac{1}{1+e^{\alpha}}\right)^{23}\left(1-\frac{1}{1+e^{\alpha+\beta}}\right)^{12}\left(\frac{1}{1+e^{\alpha+\beta}}\right)^{11}\left(1-\frac{1}{1+e^{\alpha+2 \beta}}\right)^{21}$
So the score function is given by:

$$
\frac{\partial l(\alpha, \beta)}{\partial \alpha}=3 \frac{1}{\left(1+e^{\alpha}\right)}-23 \frac{e^{\alpha}}{\left(1+e^{\alpha}\right)}+12 \frac{1}{\left(1+e^{\alpha+\beta}\right)}-11 \frac{e^{\alpha+\beta}}{\left(1+e^{\alpha+\beta}\right)}+21 \frac{1}{\left(1+e^{\alpha+2 \beta}\right)}
$$

$$
=26 \frac{1}{1+e^{\alpha}}-23+23 \frac{1}{1+e^{\alpha+\beta}}-11+21 \frac{1}{1+e^{\alpha+2 \beta}}
$$

and

$$
\begin{gathered}
\frac{\partial l(\alpha, \beta)}{\partial \beta}=-12 \frac{1}{\left(1+e^{\alpha+\beta}\right)^{2}}+11 \frac{e^{\alpha+\beta}}{\left(1+e^{\alpha+\beta}\right)^{2}}-42 \frac{1}{\left(1+e^{\alpha+2 \beta}\right)^{2}} \\
=11-23 \frac{1}{1+e^{\alpha+\beta}}-42 \frac{1}{\left(1+e^{\alpha+2 \beta}\right)}
\end{gathered}
$$

Substituting in the values $\alpha=-2.40315$ and $\beta=2.78828$ gives $\frac{\partial l(\alpha, \beta)}{\partial \alpha}=$ -0.000025585 and $\frac{\partial l(\alpha, \beta)}{\partial \beta}=-0.000019771$, so this is the maximum likelihood estimate.
(b) Use a normal approximation to calculate a 10% likelihood region for (α, β).
The second derivatives are:

$$
\begin{gathered}
\frac{\partial^{2} l(\alpha, \beta)}{\partial \alpha^{2}}=-26 \frac{e^{\alpha}}{\left(1+e^{\alpha}\right)^{2}}-23 \frac{e^{\alpha+\beta}}{\left(1+e^{\alpha+\beta}\right)^{2}}-21 \frac{e^{\alpha+2 \beta}}{\left(1+e^{\alpha+2 \beta}\right)^{2}} \\
\frac{\partial^{2} l(\alpha, \beta)}{\partial \alpha \partial \beta}=-23 \frac{e^{\alpha+\beta}}{\left(1+e^{\alpha+\beta}\right)^{2}}-42 \frac{e^{\alpha+2 \beta}}{\left(1+e^{\alpha+2 \beta}\right)^{2}} \\
\frac{\partial^{2} l(\alpha, \beta)}{\partial \beta^{2}}=-23 \frac{e^{\alpha+\beta}}{\left(1+e^{\alpha+\beta}\right)^{2}}-84 \frac{e^{\alpha+2 \beta}}{\left(1+e^{\alpha+2 \beta}\right)^{2}}
\end{gathered}
$$

Evaluating these at $\alpha=-2.40315$ and $\beta=2.78828$ gives the observed information matrix

$$
\left(\begin{array}{ll}
8.3292241141 & 7.1616549515 \\
7.1616549515 & 8.7813618861
\end{array}\right)
$$

The relative log-likelihood function is
$r(\alpha, \beta)=-\frac{8.329}{2}(\alpha+2.40315)^{2}-7.162(\alpha+2.40315)(\beta-2.78828)-\frac{8.781}{2}(\beta-2.78828)^{2}$
The 10% likelihood region is therefore

$$
\frac{8.329}{2}(\alpha+2.40315)^{2}+7.162(\alpha+2.40315)(\beta-2.78828)+\frac{8.781}{2}(\beta-2.78828)^{2}<\log (10)
$$

3. The remaining lifetime (in years) of a patient undergoing a certain kind of treatment is exponentially distributed with parameter λ. In a study which follows 10 patients for a period of 3 years, seven of the patients have lifetimes: $0.3,0.8,0.9,1.4,1.8,2.5$, and 2.9, while the remaining three patients survive to the end of the three-year period. What is the maximum likelihood estimate for λ ?
The \log-likelihood function is $7 \log (\lambda)-(0.3+0.8+0.9+1.4+1.8+2.5+$ $2.9+3 \times 3) \lambda$, so the score function is $S(\lambda)=\frac{7}{\lambda}-19.6$. Setting this to zero gives $\lambda=\frac{7}{19.6}$.
4. We observe two samples from a Poisson distribution with parameter λ. If the true value of λ is 0.7 , what is the probability that this value lies within a 10% likelihood interval?
Let the samples be X_{1} and X_{2}. The likelihood is $e^{-2 \lambda} \frac{\lambda^{X_{1}+X_{2}}}{X_{1}!X_{2}!}$, and the maximum likelihood estimate for λ is $\frac{X_{1}+X_{2}}{2}$. The relative likelihood of 0.7 is therefore $R(0.7)=\frac{e^{-1.4} 0.7^{X_{1}+X_{2}}}{e^{-\left(X_{1}+X_{2}\right)}\left(\frac{X_{1}+X_{2}}{2}\right)^{X_{1}+X_{2}}}$. Evaluating this for different values of $X_{1}+X_{2}$ gives:

$X_{1}+X_{2}$	$R(0.7)$
0	0.246596964
4	0.202040219
5	0.062986908

So 0.7 is in the 10% likelihood interval whenever $X_{1}+X_{2}<5 . X_{1}+X_{2}$ has a Poisson distribution with mean 1.4, so the probability of this is $e^{-1.4}\left(1+1.4+\frac{1.4^{2}}{2}+\frac{1.4^{3}}{3!}+\frac{1.4^{4}}{4!}\right)=.9857467038$.
5. The probability of a particular genetic condition is $p=\theta^{2}$. Let N be a sample from a binomial distribution with parameters 100 and θ. The MLE for p is $\left(\frac{N}{100}\right)^{2}$. What is the bias of this estimate?
Since $N \sim B(100, \theta)$, we have that $\mathbb{E}(N)=100 \theta$, and $\operatorname{Var}(N)=100 \theta(1-$ θ), so $\mathbb{E}\left(N^{2}\right)=10000 \theta^{2}+100 \theta(1-\theta)$, and $\mathbb{E}\left(\left(\frac{N}{100}\right)^{2}\right)=\theta^{2}+\frac{\theta(1-\theta)}{100}$, so the bias of this estimator is $\frac{\theta(1-\theta)}{100}$.

