MATH/STAT 3460, Intermediate Statistical Theory Winter 2014 Toby Kenney Midterm Examination Model Solutions

Basic Questions

 The weight (in kg) of a certain species of rabbit is believed to follow a Normal distribution with mean 5 and variance 7e^{-2√a}. Eight of these rabbits are collected, and their weights are measured as 4.9, 6.8, 3.6, 8.1, 2.3, 3.1, 6.4, and 4.2. What is the maximum likelihood estimate for a? Let σ = √7e^{-√a} be the standard deviation of the normal distribution. Then we have

$$l(\sigma) = -8\log(\sigma) - \frac{(4.9-5)^2 + (6.8-5)^2 + (3.6-5)^2 + (8.1-5)^2 + (2.3-5)^2 + (3.1-5)^2 + (6.4-5)^2 + (4.2-5)^2}{2\sigma^2}$$

= -8 log(\sigma) - \frac{28.32}{2\sigma^2}

The score function is therefore, $S(\sigma) = \frac{28.32}{\sigma^3} - \frac{8}{\sigma}$. Setting this equal to zero gives $\sigma^2 = \frac{28.32}{8} = 3.54$. The MLE for *a* is therefore given by $7e^{-2\sqrt{a}} = 3.54$, or $a = \left(\frac{\log(0.50571)}{2}\right)^2 = 0.116207159$.

2. In a trial for a new drug, the probability of a response to dose d is assumed to be $1 - \frac{1}{1+e^{\alpha+\beta d}}$ for some α and β . The data from a study of the drug are given in the following table:

dose	0	1	2
number	26	23	21
number of responses	3	12	21

(a) Show that $\alpha = -2.40315$ and $\beta = 2.78828$ is the maximum likelihood estimate for α and β

The likelihood function is

$$L(\alpha,\beta) = \left(1 - \frac{1}{1 + e^{\alpha}}\right)^3 \left(\frac{1}{1 + e^{\alpha}}\right)^{23} \left(1 - \frac{1}{1 + e^{\alpha + \beta}}\right)^{12} \left(\frac{1}{1 + e^{\alpha + \beta}}\right)^{11} \left(1 - \frac{1}{1 + e^{\alpha + 2\beta}}\right)^{21}$$

So the score function is given by:

$$\frac{\partial l(\alpha,\beta)}{\partial \alpha} = 3\frac{1}{(1+e^{\alpha})} - 23\frac{e^{\alpha}}{(1+e^{\alpha})} + 12\frac{1}{(1+e^{\alpha+\beta})} - 11\frac{e^{\alpha+\beta}}{(1+e^{\alpha+\beta})} + 21\frac{1}{(1+e^{\alpha+2\beta})} +$$

$$= 26\frac{1}{1+e^{\alpha}} - 23 + 23\frac{1}{1+e^{\alpha+\beta}} - 11 + 21\frac{1}{1+e^{\alpha+2\beta}}$$

and

$$\frac{\partial l(\alpha,\beta)}{\partial \beta} = -12 \frac{1}{(1+e^{\alpha+\beta})^2} + 11 \frac{e^{\alpha+\beta}}{(1+e^{\alpha+\beta})^2} - 42 \frac{1}{(1+e^{\alpha+2\beta})^2}$$
$$= 11 - 23 \frac{1}{1+e^{\alpha+\beta}} - 42 \frac{1}{(1+e^{\alpha+2\beta})}$$

Substituting in the values $\alpha = -2.40315$ and $\beta = 2.78828$ gives $\frac{\partial l(\alpha,\beta)}{\partial \alpha} = -0.000025585$ and $\frac{\partial l(\alpha,\beta)}{\partial \beta} = -0.000019771$, so this is the maximum likelihood estimate.

(b) Use a normal approximation to calculate a 10% likelihood region for (α, β) .

The second derivatives are:

$$\frac{\partial^2 l(\alpha,\beta)}{\partial \alpha^2} = -26 \frac{e^{\alpha}}{(1+e^{\alpha})^2} - 23 \frac{e^{\alpha+\beta}}{(1+e^{\alpha+\beta})^2} - 21 \frac{e^{\alpha+2\beta}}{(1+e^{\alpha+2\beta})^2}$$
$$\frac{\partial^2 l(\alpha,\beta)}{\partial \alpha \partial \beta} = -23 \frac{e^{\alpha+\beta}}{(1+e^{\alpha+\beta})^2} - 42 \frac{e^{\alpha+2\beta}}{(1+e^{\alpha+2\beta})^2}$$
$$\frac{\partial^2 l(\alpha,\beta)}{\partial \beta^2} = -23 \frac{e^{\alpha+\beta}}{(1+e^{\alpha+\beta})^2} - 84 \frac{e^{\alpha+2\beta}}{(1+e^{\alpha+2\beta})^2}$$

Evaluating these at $\alpha=-2.40315$ and $\beta=2.78828$ gives the observed information matrix

$$\left(\begin{array}{ccc} 8.3292241141 & 7.1616549515\\ 7.1616549515 & 8.7813618861 \end{array}\right)$$

The relative log-likelihood function is

$$r(\alpha,\beta) = -\frac{8.329}{2}(\alpha+2.40315)^2 - 7.162(\alpha+2.40315)(\beta-2.78828) - \frac{8.781}{2}(\beta-2.78828)^2$$

The 10% likelihood region is therefore

$$\frac{8.329}{2}(\alpha + 2.40315)^2 + 7.162(\alpha + 2.40315)(\beta - 2.78828) + \frac{8.781}{2}(\beta - 2.78828)^2 < \log(10)(\beta - 2.78828) + \log(10)(\beta - 2.78828882888) + \log(10)(\beta - 2.788288) + \log(10)(\beta - 2.78828) + \log(10)(\beta - 2.7$$

3. The remaining lifetime (in years) of a patient undergoing a certain kind of treatment is exponentially distributed with parameter λ. In a study which follows 10 patients for a period of 3 years, seven of the patients have lifetimes: 0.3, 0.8, 0.9, 1.4, 1.8, 2.5, and 2.9, while the remaining three patients survive to the end of the three-year period. What is the maximum likelihood estimate for λ?

The log-likelihood function is $7 \log(\lambda) - (0.3 + 0.8 + 0.9 + 1.4 + 1.8 + 2.5 + 2.9 + 3 \times 3)\lambda$, so the score function is $S(\lambda) = \frac{7}{\lambda} - 19.6$. Setting this to zero gives $\lambda = \frac{7}{19.6}$.

4. We observe two samples from a Poisson distribution with parameter λ . If the true value of λ is 0.7, what is the probability that this value lies within a 10% likelihood interval?

Let the samples be X_1 and X_2 . The likelihood is $e^{-2\lambda} \frac{\lambda^{X_1+X_2}}{X_1!X_2!}$, and the maximum likelihood estimate for λ is $\frac{X_1+X_2}{2}$. The relative likelihood of 0.7 is therefore $R(0.7) = \frac{e^{-1.4}0.7^{X_1+X_2}}{e^{-(X_1+X_2)} \left(\frac{X_1+X_2}{2}\right)^{X_1+X_2}}$. Evaluating this for different values of $X_1 + X_2$ gives:

$X_1 + X_2$	R(0.7)
0	0.246596964
4	0.202040219
5	0.062986908

So 0.7 is in the 10% likelihood interval whenever $X_1 + X_2 < 5$. $X_1 + X_2$ has a Poisson distribution with mean 1.4, so the probability of this is $e^{-1.4} \left(1 + 1.4 + \frac{1.4^2}{2} + \frac{1.4^3}{3!} + \frac{1.4^4}{4!}\right) = .9857467038.$

5. The probability of a particular genetic condition is $p = \theta^2$. Let N be a sample from a binomial distribution with parameters 100 and θ . The MLE for p is $\left(\frac{N}{100}\right)^2$. What is the bias of this estimate?

Since $N \sim B(100, \theta)$, we have that $\mathbb{E}(N) = 100\theta$, and $\operatorname{Var}(N) = 100\theta(1 - \theta)$, so $\mathbb{E}(N^2) = 10000\theta^2 + 100\theta(1 - \theta)$, and $\mathbb{E}\left(\left(\frac{N}{100}\right)^2\right) = \theta^2 + \frac{\theta(1-\theta)}{100}$, so the bias of this estimator is $\frac{\theta(1-\theta)}{100}$.