ACSC/STAT 3703, Actuarial Models I (Further Probability with Applications to Actuarial Science) Winter 2015 Toby Kenney Homework Sheet 2 Due: Friday 23rd January: 12:30 PM

Basic Questions

1. Calculate the probability density function of a random variable that is 7 times a beta random variable with $\alpha = 3$ and $\beta = 2$. The density function of this beta random variable is

$$f_X(x) = \begin{cases} x^2(1-x) & \text{if } 0 < x < 1\\ 0 & \text{otherwise} \end{cases}$$

- 2. Calculate the distribution of X^8 when X follows a gamma distribution with $\alpha = 3$ and $\theta = 13$.
- 3. X is a random variable with moment generating function $M_X(t) = \frac{1}{(3-t)\left(1-\frac{t}{6}\right)}$. What is the variance of the random variable e^X ?
- 4. X is a mixture of 3 distributions:
 - With probability 0.2, X follows a gamma distribution with $\alpha = 2$ and $\theta = 2000$.
 - With probability 0.35, X follows a gamma distribution with $\alpha = 3$ and $\theta = 4000$.
 - With probability 0.45, X follows a Weibull distribution with $\theta = 2000$ and $\tau = 4$.

The moments of these distributions are given in the following table:

	Distribution 1	Distribution 2	Distribution 3
μ	4000	12000	1812.805
μ_2	8000000	48000000	258645.631975
μ_3	$3.2 imes 10^{10}$	$2.56 imes 10^{11}$	11474411.56287975
μ_4	3.84×10^{14}	1.152×10^{16}	183821938794.038572798
μ_2'	2.4×10^7	1.92×10^{8}	3544907.60000
μ'_3	$2.56 imes10^{11}$	$5.44 imes 10^{12}$	13309852126.945560125
μ'_4	2.944×10^{15}	1.6896×10^{17}	59198070889950.1844896020

(a) What is the coefficient of variation of X?

(b) [bonus] What is the kurtosis of X?

5. For a particular claim, the insurance company has observed the following claim sizes:

12.3, 16.8, 24.6, 25.2, 25.4, 25.8, 30.2, and 35.3.

Using a kernel smoothing model with a Gaussian kernel with variance 0.5, calculate the probability that the next claim size is between 22 and 26.

Standard Questions

- 6. An insurance company finds that the loss experienced by an individual follows an inverse exponential distribution with θ depending on the individual. It models this θ as following a gamma distribution with $\alpha = 3$ and $\theta = 2000$. What is the distribution of the loss of a random individual.
- 7. A life insurance company models the mortality of an individual as following a Gompertz law with hazard rate given by $\lambda = 0.00001 a e^{0.1t}$, where *a* is the frailty of the individual. It models *a* as following a gamma distribution with $\alpha = 0.4$ and $\theta = 2$. Calculate the probability that a randomly chosen individual lives to age 100.
- 8. An insurance company wants to model a random variable X. It believes that for large values, it should use a Pareto distribution with $\alpha = 4$ and $\theta = 300$ to model the distribution of values above 5000. For values below 5000, it plans to use an inverse gamma distribution with $\alpha = 3$ and $\theta =$ 800. If 5% of values are above 5000, what is the probability under this model that the value of X is between 3000 and 10000?