ACSC/STAT 3703, Actuarial Models I (Further Probability with Applications to Actuarial Science)
 Winter 2015
 Toby Kenney
 Homework Sheet 2
 Due: Friday 23rd January: 12:30 PM

Basic Questions

1. Calculate the probability density function of a random variable that is 7 times a beta random variable with $\alpha=3$ and $\beta=2$. The density function of this beta random variable is

$$
f_{X}(x)= \begin{cases}x^{2}(1-x) & \text { if } 0<x<1 \\ 0 & \text { otherwise }\end{cases}
$$

2. Calculate the distribution of X^{8} when X follows a gamma distribution with $\alpha=3$ and $\theta=13$.
3. X is a random variable with moment generating function $M_{X}(t)=\frac{1}{(3-t)\left(1-\frac{t}{6}\right)}$. What is the variance of the random variable e^{X} ?
4. X is a mixture of 3 distributions:

- With probability $0.2, X$ follows a gamma distribution with $\alpha=2$ and $\theta=2000$.
- With probability $0.35, X$ follows a gamma distribution with $\alpha=3$ and $\theta=4000$.
- With probability $0.45, X$ follows a Weibull distribution with $\theta=2000$ and $\tau=4$.

The moments of these distributions are given in the following table:

	Distribution 1	Distribution 2	Distribution 3
μ	4000	12000	1812.805
μ_{2}	80000000	48000000	258645.631975
μ_{3}	3.2×10^{10}	2.56×10^{11}	11474411.56287975
μ_{4}	3.84×10^{14}	1.152×10^{16}	183821938794.038572798
μ_{2}^{\prime}	2.4×10^{7}	1.92×10^{8}	3544907.60000
μ_{3}^{\prime}	2.56×10^{11}	5.44×10^{12}	13309852126.945560125
μ_{4}^{\prime}	2.944×10^{15}	1.6896×10^{17}	59198070889950.1844896020

(a) What is the coefficient of variation of X ?
(b) [bonus] What is the kurtosis of X ?
5. For a particular claim, the insurance company has observed the following claim sizes:
$12.3,16.8,24.6,25.2,25.4,25.8,30.2$, and 35.3 .
Using a kernel smoothing model with a Gaussian kernel with variance 0.5 , calculate the probability that the next claim size is between 22 and 26 .

Standard Questions

6. An insurance company finds that the loss experienced by an individual follows an inverse exponential distribution with θ depending on the individual. It models this θ as following a gamma distribution with $\alpha=3$ and $\theta=2000$. What is the distribution of the loss of a random individual.
7. A life insurance company models the mortality of an individual as following a Gompertz law with hazard rate given by $\lambda=0.00001 a e^{0.1 t}$, where a is the frailty of the individual. It models a as following a gamma distribution with $\alpha=0.4$ and $\theta=2$. Calculate the probability that a randomly chosen individual lives to age 100.
8. An insurance company wants to model a random variable X. It believes that for large values, it should use a Pareto distribution with $\alpha=4$ and $\theta=300$ to model the distribution of values above 5000. For values below 5000 , it plans to use an inverse gamma distribution with $\alpha=3$ and $\theta=$ 800. If 5% of values are above 5000 , what is the probability under this model that the value of X is between 3000 and 10000 ?
