ACSC/STAT 3703, Actuarial Models I (Further Probability with Applications to Actuarial Science) Winter 2015 Toby Kenney Homework Sheet 4 Due: Monday 23rd February: 12:30 PM

Basic Questions

- 1. Let X follow a negative binomial distribution with r = 4 and $\beta = 1.2$. What is the probability that X = 8?
- 2. The number of claims on each insurance policy over a given time period is observed as follows:

Number of claims	Number of policies
0	736
1	382
2	74
3	7
4	2
5 or more	0

Which distribution(s) from the (a, b, 0)-class and (a, b, 1)-class appear most appropriate for modelling this data?

- 3. X follows an extended modified negative binomial distribution with r = -0.8 and $\beta = 2$, and $p_0 = 0.4$. What is P(X = 7)?
- 4. Let X follow a compound Poisson-Negative binomial distribution with parameters $\lambda = 3.3$, r = 4.8 and $\beta = 2.3$. Calculate the conditional probability that X = 7 given that $X \leq 10$.
- 5. Let X follow a mixed negative binomial distribution with $\beta = 1.5$ and r following a gamma distribution with $\alpha = 2$ and $\theta = 4$. What is the probability that X = 2?

Standard Questions

6. An insurance company estimates that the number of claims made by an individual in a year follows a Poisson distribution with parameter λ , where λ varies between individuals, following a gamma distribution with $\alpha = 3$ and $\theta = 0.05$.

(a) What is the probability that a randomly chosen individual makes 3 claims in a given year?

(b) If an individual has made 3 claims in a given year, what is the probability that that individual makes 3 claims in the next year?

- 7. An insurance company models the number of claims X on a given policy using a distribution from the (a, b, 1)-class. The company wants its distribution to match the observed mean $\mathbb{E}(X) = 0.475$ and probability of zero P(X = 0) = 0.738, and also wants P(X > 3) = 0.01. From this, they calculate P(X = 1) = 0.1120652294. Under this model, what is the probability that an individual makes 4 claims in a year? [Hint: for a general member of the (a, b, 1) class, we have $\mathbb{E}(X) = \frac{p_1 + (a+b)(1-p_0)}{1-a}$ and $p_1^T = \frac{a+b}{(1-a)^{-1-\frac{b}{a}}-1}$.]
- 8. An insurance company insures 200 houses. The number of claims resulting from these policies follows a compound Poisson-Binomial distribution with $\lambda = 12$, n = 8 and p = 0.001. The company's risk management division wants to ensure that the probability of receiving 2 or more claims should be at most 0.001. How many houses can the company insure while satisfying this condition?
 - (i) 52
 - (ii) 88
 - (iii) 147
 - (iv) 260

Bonus Question

9. Using the general recursion formula, show that the expected value of a distribution from the (a, b, 0)-class is given by $\frac{a+b}{1-a}$.