ACSC/STAT 3703, Actuarial Models I (Further Probability with Applications to Actuarial Science)
Winter 2015
Toby Kenney
Homework Sheet 2
Model Solutions

Basic Questions

1. Calculate the probability density function of a random variable that is 7 times a beta random variable with $\alpha=3$ and $\beta=2$. The density function of this beta random variable is

$$
f_{X}(x)= \begin{cases}x^{2}(1-x) & \text { if } 0<x<1 \\ 0 & \text { otherwise }\end{cases}
$$

The density function of $7 X$ is

$$
f_{7 X}(x)=\frac{1}{7} f_{X}\left(\frac{x}{7}\right)= \begin{cases}\frac{1}{7}\left(\frac{x}{7}\right)^{2}\left(1-\frac{x}{7}\right) & \text { if } 0 \leqslant x \leqslant 7 \\ 0 & \text { otherwise }\end{cases}
$$

2. Calculate the distribution of X^{8} when X follows a gamma distribution with $\alpha=3$ and $\theta=13$.
The density function of X is $\frac{x^{2}}{2 \times 13^{3}} e^{-\frac{x}{13}}$. The density function of X^{8} is $f_{X^{8}}\left(a^{8}\right)=\frac{a^{2}}{8 a^{7} \times 2 \times 13^{3}} e^{-\frac{a}{13}}$, so we have $f_{X^{8}}(x)=\frac{1}{16 \times 13^{3}} x^{-\frac{5}{8}} e^{-\frac{x^{\frac{1}{8}}}{13}}$, so X^{8} has a transformed gamma distribution with $\alpha=3, \gamma=\frac{1}{8}$ and $\theta=13^{8}$.
3. X is a random variable with moment generating function $M_{X}(t)=\frac{1}{(3-t)\left(1-\frac{t}{6}\right)}$.

What is the variance of the random variable e^{X} ?
We know that $\left(e^{X}\right)^{2}=e^{(2 X)}$, so $\mathbb{E}\left(\left(e^{X}\right)^{2}\right)=M_{X}(2)$, while $\mathbb{E}\left(e^{X}\right)=$ $M_{X}(1)$, so we have $\operatorname{Var}\left(e^{X}\right)=M_{X}(2)-\left(M_{X}(1)\right)^{2}=\frac{3}{2}-\left(\frac{6}{10}\right)^{2}=1.14$.
4. X is a mixture of 3 distributions:

- With probability $0.2, X$ follows a gamma distribution with $\alpha=2$ and $\theta=2000$.
- With probability $0.35, X$ follows a gamma distribution with $\alpha=3$ and $\theta=4000$.
- With probability $0.45, X$ follows a Weibull distribution with $\theta=2000$ and $\tau=4$.
(a) What is the coefficient of variation of X ?

The mean of a gamma distribution is $\alpha \theta$, and the mean of a Weibull distribution is $\theta \Gamma\left(1+\frac{1}{\tau}\right)$. The variances are $\alpha \theta^{2}$ and $\theta^{2}\left(\Gamma\left(1+\frac{2}{\tau}\right)-\left(\Gamma\left(1+\frac{1}{k}\right)\right)^{2}\right)$ respectively.
In this case, the first distribution has mean 4000 and variance 8000000; the second distribution has mean 12000 and variance 48000000; and the third distribution has mean 1812.805 and variance 258645.631975 . The expected value of the mixture is therefore $0.2 \times 4000+0.35 \times 12000+$ $0.45 \times 1812.805=5815.76225$. The variance of the mixture is $0.2 \times\left(4000^{2}+\right.$ $8000000)+0.35 \times\left(12000^{2}+48000000\right)+0.45 \times\left(1812.805^{2}+258645.631975\right)-$ $5815.76225^{2}=29772117.871474937$, so the standard deviation is 5456.38 , and the coefficient of variation is $\frac{5456.38}{5815.76}=0.938$.
(b) [bonus] What is the kurtosis of X ?

We have the following:

	Distribution 1	Distribution 2	Distribution 3
μ	4000	12000	1812.805
μ_{2}	80000000	48000000	258645.631975
μ_{3}	3.2×10^{10}	2.56×10^{11}	11474411.56287975
μ_{4}	3.84×10^{14}	1.152×10^{16}	183821938794.038572798
μ_{2}^{\prime}	2.4×10^{7}	1.92×10^{8}	3544907.60000
μ_{3}^{\prime}	2.56×10^{11}	5.44×10^{12}	13309852126.945560125
μ_{4}^{\prime}	2.944×10^{15}	1.6896×10^{17}	59198070889950.1844896020

The raw moments of the mixture are therefore

$$
\begin{aligned}
\mu_{4}^{\prime} & =0.2 \times 2.944 \times 10^{15}+0.35 \times 1.6896 \times 10^{17}+0.45 \times 59198070889950.1844896020=597514391319004 \\
\mu_{3}^{\prime} & =0.2 \times 2.56 \times 10^{11}+0.35 \times 5.44 \times 10^{12}+0.45 \times 13309852126.945560125=1961189433457.12550205 \\
\mu_{2}^{\prime} & =0.2 \times 2.4 \times 10^{7}+0.35 \times 1.92 \times 10^{8}+0.45 \times 3544907.60000=73595208.42000000 \\
\mu & =0.2 \times 4000+0.35 \times 12000+0.45 \times 1812.805=5815.76225
\end{aligned}
$$

We therefore get that the centralised moments of the mixture are

$$
\begin{aligned}
& \mu_{4}=\mu_{4}^{\prime}-4 \mu \mu_{3}^{\prime}+6 \mu^{2} \mu_{2}^{\prime}-3 \mu^{4}=25631493270307355.9794255146 \\
& \mu_{2}=\mu_{2}^{\prime}-\mu^{2}=39772117.8714749375
\end{aligned}
$$

so the kurtosis is $\frac{25631493270307355.9794255146}{39772117.8714749375^{2}}=16.2037850282$.
5. For a particular claim, the insurance company has observed the following claim sizes:
12.3, 16.8, 24.6, 25.2, 25.4, 25.8, 30.2, and 35.3.

Using a kernel smoothing model with a Gaussian kernel with variance 0.5, calculate the probability that the next claim size is between 22 and 26.
The kernel to be used for each observation a is $\frac{1}{\sqrt{\pi}} e^{-(x-a)^{2}}$. The kernel distribution is given by taking the average of the kernels from each observation. The probability of being between 22 and 26 is therefore given by

$$
\begin{aligned}
& \frac{1}{8}(\Phi((26-12.3) \sqrt{2})+\Phi((26-16.8) \sqrt{2})+\Phi((26-24.6) \sqrt{2})+\Phi((26-25.2) \sqrt{2}) \\
& +\Phi((26-25.4) \sqrt{2})+\Phi((26-25.4) \sqrt{2})+\Phi((26-30.2) \sqrt{2})+\Phi((26-35.3) \sqrt{2}) \\
& -\Phi((22-12.3) \sqrt{2})-\Phi((22-16.8) \sqrt{2})-\Phi((22-24.6) \sqrt{2})-\Phi((26-25.2) \sqrt{2}) \\
& -\Phi((26-25.4) \sqrt{2})-\Phi((26-25.8) \sqrt{2})-\Phi((26-30.2) \sqrt{2})-\Phi(22-35.3 \sqrt{2}))
\end{aligned}
$$

This is

$$
\begin{aligned}
& \frac{1}{8}(\Phi(19.37)+\Phi(13.01)+\Phi(1.98)+\Phi(1.13)+\Phi(0.85)+\Phi(0.28)+\Phi(-5.94)+\Phi(-13.15) \\
- & \Phi(13.72)-\Phi(7.35)-\Phi(-3.68)-\Phi(-4.53)-\Phi(-4.81)-\Phi(-5.37)-\Phi(-11.60)-\Phi(-18.81)) \\
= & \frac{1}{8}(1+1+0.9761+0.8708+0.8023+0.6103+0+0-1-1-0.0001-0-0-0-0-0) \\
= & \frac{3.2594}{8}=0.4074
\end{aligned}
$$

Standard Questions

6. An insurance company finds that the loss experienced by an individual follows an inverse exponential distribution with θ depending on the individual. It models this θ as following a gamma distribution with $\alpha=3$ and $\theta=2000$. What is the distribution of the loss of a random individual.
The density function of the conditional distribution given θ is $f(x)=$ $\frac{\theta e^{-\frac{\theta}{x}}}{x^{2}}$, and the distribution of θ is $f_{\theta}(\theta)=\frac{\theta^{2} e^{-\frac{\theta}{2000}}}{2 \times 2000^{3}}$. The distribution of the loss for a random individual therefore has

$$
f(x)=\int_{0}^{\infty}\left(\frac{\theta e^{-\frac{\theta}{x}}}{x^{2}}\right)\left(\frac{\theta^{2} e^{-\frac{\theta}{2000}}}{2 \times 2000^{3}}\right) d \theta=\frac{1}{2 \times 2000^{3} x^{2}} \int_{0}^{\infty} \theta^{3} e^{-\left(\frac{1}{x}+\frac{1}{2000}\right) \theta} d \theta
$$

If we let $a=\frac{1}{\frac{1}{x}+\frac{1}{2000}}$, then the integral becomes $\int_{0}^{\infty} \theta^{3} e^{-\frac{\theta}{a}} d \theta$ which is $a^{4} \Gamma(4)=6 a^{4}$, so

$$
f(x)=\frac{6 a^{4}}{2 \times 2000^{3} x^{2}}=\frac{3}{8 \times 10^{9} x^{2}\left(\frac{1}{x}+\frac{1}{2000}\right)^{4}}=\frac{6000 x^{2}}{(x+2000)^{4}}
$$

7. A life insurance company models the mortality of an individual as following a Gompertz law with hazard rate given by $\lambda=0.00001 a e^{0.1 t}$, where a is the frailty of the individual. It models a as following a gamma distribution with $\alpha=0.4$ and $\theta=2$. Calculate the probability that a randomly chosen individual lives to age 100.
The probability that an individual with frailty a lives to age 100 is $e^{-\int_{0}^{100} 0.00001 a e^{0.1 t} d t}$. We have $\int_{0}^{100} e^{-0.1 t} d t=10\left[e^{0.1 t}\right]_{0}^{100}=10\left(e^{10}-1\right)$, so the probability is $e^{-0.0001 a\left(e^{10}-1\right)}=e^{-2.202547 a}$. The probability for a random individual is the expected value of this probability - that is $\mathbb{E}\left(e^{-2.202547 A}\right)$, where A follows a gamma distribution with $\alpha=0.4$ and $\theta=2$. This is $M_{A}(-2.202547)=(1+2 \times 2.202547)^{-0.4}=0.509188664$.
8. An insurance company wants to model a random variable X. It believes that for large values, it should use a Pareto distribution with $\alpha=4$ and $\theta=300$ to model the distribution of values above 5000. For values below 5000, it plans to use an inverse gamma distribution with $\alpha=3$ and $\theta=$ 800. If 5% of values are above 5000, what is the probability under this model that the value of X is between 3000 and 10000?
Given that the value is under 5000 , the probability that it is above 3000 is the probability that its inverse is above $\frac{1}{3000}$ The inverse of the inverse gamma distribution follows a gamma distribution with $\alpha=3$ and $\theta=$ 0.00125. The probability that this is below $\frac{1}{3000}$ is given by $\frac{\int_{\frac{1}{300}}^{\frac{1}{5000}} 800^{3} x^{2} e^{-800 x} d x}{\frac{1}{5000} 800^{3} x^{2} e^{-800 x} d x}$ Integrating by parts gives

$$
\int_{a}^{\infty} x^{2} e^{-800 x} d x=\left[-\frac{x^{2} e^{-800 x}}{800}\right]_{a}^{\infty}+\int_{a}^{\infty} \frac{x e^{-800 x}}{400} d x=\frac{a^{2} e^{-800 a}}{800}+\frac{a e^{-800 a}}{320000}+\frac{e^{-800 a}}{128000000}
$$

so the probability above is

$$
1-\frac{\left(640000\left(\frac{1}{3000}\right)^{2}+1600\left(\frac{1}{3000}\right)+2\right) e^{-\frac{800}{3000}}}{\left(640000\left(\frac{1}{(5000}\right)^{2}+1600\left(\frac{1}{5000}\right)+2\right) e^{-\frac{8000}{5000}}}=1-\frac{1.994817806}{1.998788471}=1-0.998013464=0.00199
$$

For the Pareto distribution, the probability of being above 5000 is $\left(1+\frac{5000}{300}\right)^{-3}=$ 0.000181358 , while the probability of being above 10000 is $\left(1+\frac{10000}{300}\right)^{-3}=$ 0.000024709 , so the probability of being below 10000 conditional on being above 5000 is $1-\frac{0.000024709}{0.000181358}=0.863755666$. The total probability that X is in the interval $(3000,10000)$ is therefore $0.95 \times 0.00199+0.05 \times$ $0.863755666=0.0451$.

