ACSC/STAT 3703, Actuarial Models I (Further Probability with Applications to Actuarial Science) Winter 2015 Toby Kenney Homework Sheet 2 Model Solutions

Basic Questions

1. Calculate the probability density function of a random variable that is 7 times a beta random variable with $\alpha = 3$ and $\beta = 2$. The density function of this beta random variable is

$$f_X(x) = \begin{cases} x^2(1-x) & \text{if } 0 < x < 1\\ 0 & \text{otherwise} \end{cases}$$

The density function of 7X is

$$f_{7X}(x) = \frac{1}{7} f_X\left(\frac{x}{7}\right) = \begin{cases} \frac{1}{7} \left(\frac{x}{7}\right)^2 \left(1 - \frac{x}{7}\right) & \text{if } 0 \le x \le 7\\ 0 & \text{otherwise} \end{cases}$$

2. Calculate the distribution of X^8 when X follows a gamma distribution with $\alpha = 3$ and $\theta = 13$.

The density function of X is $\frac{x^2}{2\times 13^3}e^{-\frac{x}{13}}$. The density function of X^8 is $f_{X^8}(a^8) = \frac{a^2}{8a^7\times 2\times 13^3}e^{-\frac{a}{13}}$, so we have $f_{X^8}(x) = \frac{1}{16\times 13^3}x^{-\frac{5}{8}}e^{-\frac{x^{\frac{1}{8}}}{13}}$, so X^8 has a transformed gamma distribution with $\alpha = 3$, $\gamma = \frac{1}{8}$ and $\theta = 13^8$.

3. X is a random variable with moment generating function $M_X(t) = \frac{1}{(3-t)\left(1-\frac{t}{6}\right)}$. What is the variance of the random variable e^X ?

We know that $(e^X)^2 = e^{(2X)}$, so $\mathbb{E}((e^X)^2) = M_X(2)$, while $\mathbb{E}(e^X) = M_X(1)$, so we have $\operatorname{Var}(e^X) = M_X(2) - (M_X(1))^2 = \frac{3}{2} - \left(\frac{6}{10}\right)^2 = 1.14$.

- 4. X is a mixture of 3 distributions:
 - With probability 0.2, X follows a gamma distribution with $\alpha = 2$ and $\theta = 2000$.
 - With probability 0.35, X follows a gamma distribution with $\alpha = 3$ and $\theta = 4000$.
 - With probability 0.45, X follows a Weibull distribution with $\theta = 2000$ and $\tau = 4$.

(a) What is the coefficient of variation of X?

The mean of a gamma distribution is $\alpha\theta$, and the mean of a Weibull distribution is $\theta\Gamma\left(1+\frac{1}{\tau}\right)$. The variances are $\alpha\theta^2$ and $\theta^2\left(\Gamma\left(1+\frac{2}{\tau}\right)-\left(\Gamma\left(1+\frac{1}{k}\right)\right)^2\right)$ respectively.

In this case, the first distribution has mean 4000 and variance 8000000; the second distribution has mean 12000 and variance 48000000; and the third distribution has mean 1812.805 and variance 258645.631975. The expected value of the mixture is therefore $0.2 \times 4000 + 0.35 \times 12000 + 0.45 \times 1812.805 = 5815.76225$. The variance of the mixture is $0.2 \times (4000^2 + 800000) + 0.35 \times (12000^2 + 4800000) + 0.45 \times (1812.805^2 + 258645.631975) - 5815.76225^2 = 29772117.871474937$, so the standard deviation is 5456.38, and the coefficient of variation is $\frac{5456.38}{5815.76} = 0.938$.

(b) [bonus] What is the kurtosis of X?

We have the following:

	Distribution 1	Distribution 2	Distribution 3
μ	4000	12000	1812.805
μ_2	8000000	48000000	258645.631975
μ_3	3.2×10^{10}	2.56×10^{11}	11474411.56287975
μ_4	3.84×10^{14}	1.152×10^{16}	183821938794.038572798
μ_2'	2.4×10^7	1.92×10^{8}	3544907.60000
μ'_3	$2.56 imes10^{11}$	$5.44 imes 10^{12}$	13309852126.945560125
μ'_4	2.944×10^{15}	1.6896×10^{17}	59198070889950.1844896020

The raw moments of the mixture are therefore

 $\mu_4' = 0.2 \times 2.944 \times 10^{15} + 0.35 \times 1.6896 \times 10^{17} + 0.45 \times 59198070889950.1844896020 = 597514391319004 \\ \mu_3' = 0.2 \times 2.56 \times 10^{11} + 0.35 \times 5.44 \times 10^{12} + 0.45 \times 13309852126.945560125 = 1961189433457.12550205660125 \\ = 1961189433457.12550205660125 \\ = 1961189433457.12550205660125 \\ = 1961189433457.12550205660125 \\ = 1961189433457.12550205660125 \\ = 1961189433457.12550205660125 \\ = 1961189433457.12550205660125 \\ = 1961189433457.12550205660125 \\ = 1961189433457.12550205660125 \\ = 1961189433457.125502056600 \\ = 1961189433457.125502056600 \\ = 1961189433457.125502056600 \\ = 1961189433457.125502056600 \\ = 1961189433457.125502056600 \\ = 1961189433457.125502056600 \\ = 1961189433457.125502056600 \\ = 1961189433457.125502056600 \\ = 1961189433457.125502056600 \\ = 1961189433457.125502056600 \\ = 1961189433457.125502056600 \\ = 1961189433457.125502056600 \\ = 1961189433457.125502056600 \\ = 1961189433457.125502056600 \\ = 1961189433457.125502056600 \\ = 1961189433457.125502056600 \\ = 1961189433457.125502056600 \\ = 1961189433457.125502056600 \\ = 1961189433457.125502056600 \\ = 1961189433457.12550205600 \\ = 1961189433457.12550205600 \\ = 1961189433457.12550205600 \\ = 1961189433457.12550205600 \\ = 1961189433457.12550205600 \\ = 196118945600 \\ = 1961189400 \\ = 1961189400 \\ = 1961189400 \\ = 1961189400 \\ = 1961189400 \\ = 1961189400 \\ = 1961189400 \\ = 1961189400 \\ = 1961189400 \\ = 1961189400 \\ = 196118900 \\ = 1$

$$\mu_2' = 0.2 \times 2.4 \times 10^7 + 0.35 \times 1.92 \times 10^8 + 0.45 \times 3544907.60000 = 73595208.42000000$$

$$\mu = 0.2 \times 4000 + 0.35 \times 12000 + 0.45 \times 1812.805 = 5815.76225$$

We therefore get that the centralised moments of the mixture are

$$\mu_4 = \mu'_4 - 4\mu\mu'_3 + 6\mu^2\mu'_2 - 3\mu^4 = 25631493270307355.9794255146$$

$$\mu_2 = \mu'_2 - \mu^2 = 39772117.8714749375$$

so the kurtosis is $\frac{25631493270307355.9794255146}{39772117.8714749375^2} = 16.2037850282.$

- 5. For a particular claim, the insurance company has observed the following claim sizes:
 - 12.3, 16.8, 24.6, 25.2, 25.4, 25.8, 30.2, and 35.3.

Using a kernel smoothing model with a Gaussian kernel with variance 0.5, calculate the probability that the next claim size is between 22 and 26.

The kernel to be used for each observation a is $\frac{1}{\sqrt{\pi}}e^{-(x-a)^2}$. The kernel distribution is given by taking the average of the kernels from each observation. The probability of being between 22 and 26 is therefore given by

$$\begin{aligned} &\frac{1}{8} \Big(\Phi((26-12.3)\sqrt{2}) + \Phi((26-16.8)\sqrt{2}) + \Phi((26-24.6)\sqrt{2}) + \Phi((26-25.2)\sqrt{2}) \\ &+ \Phi((26-25.4)\sqrt{2}) + \Phi((26-25.4)\sqrt{2}) + \Phi((26-30.2)\sqrt{2}) + \Phi((26-35.3)\sqrt{2}) \\ &- \Phi((22-12.3)\sqrt{2}) - \Phi((22-16.8)\sqrt{2}) - \Phi((22-24.6)\sqrt{2}) - \Phi((26-25.2)\sqrt{2}) \\ &- \Phi((26-25.4)\sqrt{2}) - \Phi((26-25.8)\sqrt{2}) - \Phi((26-30.2)\sqrt{2}) - \Phi((22-35.3\sqrt{2})) \end{aligned}$$

This is

$$\frac{1}{8} \left(\Phi(19.37) + \Phi(13.01) + \Phi(1.98) + \Phi(1.13) + \Phi(0.85) + \Phi(0.28) + \Phi(-5.94) + \Phi(-13.15) - \Phi(13.72) - \Phi(7.35) - \Phi(-3.68) - \Phi(-4.53) - \Phi(-4.81) - \Phi(-5.37) - \Phi(-11.60) - \Phi(-18.81) \right)$$

 $= \frac{1}{8} \left(1 + 1 + 0.9761 + 0.8708 + 0.8023 + 0.6103 + 0 + 0 - 1 - 1 - 0.0001 - 0 - 0 - 0 - 0 - 0 \right)$ $= \frac{3.2594}{8} = 0.4074$

Standard Questions

6. An insurance company finds that the loss experienced by an individual follows an inverse exponential distribution with θ depending on the individual. It models this θ as following a gamma distribution with $\alpha = 3$ and $\theta = 2000$. What is the distribution of the loss of a random individual.

The density function of the conditional distribution given θ is $f(x) = \frac{\theta e^{-\frac{\theta}{x}}}{x^2}$, and the distribution of θ is $f_{\theta}(\theta) = \frac{\theta^2 e^{-\frac{\theta}{2000}}}{2 \times 2000^3}$. The distribution of the loss for a random individual therefore has

$$f(x) = \int_0^\infty \left(\frac{\theta e^{-\frac{\theta}{x}}}{x^2}\right) \left(\frac{\theta^2 e^{-\frac{\theta}{2000}}}{2 \times 2000^3}\right) d\theta = \frac{1}{2 \times 2000^3 x^2} \int_0^\infty \theta^3 e^{-\left(\frac{1}{x} + \frac{1}{2000}\right)\theta} d\theta$$

If we let $a = \frac{1}{\frac{1}{x} + \frac{1}{2000}}$, then the integral becomes $\int_0^\infty \theta^3 e^{-\frac{\theta}{a}} d\theta$ which is $a^4 \Gamma(4) = 6a^4$, so

$$f(x) = \frac{6a^4}{2 \times 2000^3 x^2} = \frac{3}{8 \times 10^9 x^2 \left(\frac{1}{x} + \frac{1}{2000}\right)^4} = \frac{6000 x^2}{\left(x + 2000\right)^4}$$

7. A life insurance company models the mortality of an individual as following a Gompertz law with hazard rate given by $\lambda = 0.00001ae^{0.1t}$, where a is the frailty of the individual. It models a as following a gamma distribution with $\alpha = 0.4$ and $\theta = 2$. Calculate the probability that a randomly chosen individual lives to age 100.

The probability that an individual with frailty *a* lives to age 100 is $e^{-\int_0^{100} 0.00001 a e^{0.1t} dt}$. We have $\int_0^{100} e^{-0.1t} dt = 10 \left[e^{0.1t} \right]_0^{100} = 10(e^{10} - 1)$, so the probability is $e^{-0.0001a(e^{10}-1)} = e^{-2.202547a}$. The probability for a random individual is the expected value of this probability — that is $\mathbb{E}(e^{-2.202547A})$, where *A* follows a gamma distribution with $\alpha = 0.4$ and $\theta = 2$. This is $M_A(-2.202547) = (1 + 2 \times 2.202547)^{-0.4} = 0.509188664$.

8. An insurance company wants to model a random variable X. It believes that for large values, it should use a Pareto distribution with $\alpha = 4$ and $\theta = 300$ to model the distribution of values above 5000. For values below 5000, it plans to use an inverse gamma distribution with $\alpha = 3$ and $\theta =$ 800. If 5% of values are above 5000, what is the probability under this model that the value of X is between 3000 and 10000?

Given that the value is under 5000, the probability that it is above 3000 is the probability that its inverse is above $\frac{1}{3000}$ The inverse of the inverse gamma distribution follows a gamma distribution with $\alpha = 3$ and $\theta = \int_{0}^{\frac{1}{3000}} 800^{3} r^{2} e^{-800x}$

0.00125. The probability that this is below $\frac{1}{3000}$ is given by $\int_{\frac{5000}{5000}}^{\frac{1}{5000}} 800^3 x^2 e^{-800x} dx$

Integrating by parts gives

so the probability above is

$$1 - \frac{\left(640000\left(\frac{1}{3000}\right)^2 + 1600\left(\frac{1}{3000}\right) + 2\right)e^{-\frac{800}{3000}}}{\left(640000\left(\frac{1}{5000}\right)^2 + 1600\left(\frac{1}{5000}\right) + 2\right)e^{-\frac{800}{5000}}} = 1 - \frac{1.994817806}{1.998788471} = 1 - 0.998013464 = 0.00199$$

For the Pareto distribution, the probability of being above 5000 is $(1 + \frac{5000}{300})^{-3} = 0.000181358$, while the probability of being above 10000 is $(1 + \frac{10000}{300})^{-3} = 0.000024709$, so the probability of being below 10000 conditional on being above 5000 is $1 - \frac{0.00024709}{0.000181358} = 0.863755666$. The total probability that X is in the interval (3000, 10000) is therefore $0.95 \times 0.00199 + 0.05 \times 0.863755666 = 0.0451$.