ACSC/STAT 3703, Actuarial Models I (Further Probability with Applications to Actuarial Science) Winter 2015 Toby Kenney Homework Sheet 3 Model Solutions

Basic Questions

1. Construct a distribution which is a special case of all distributions in the transformed beta family. How many parameters does it have?

The transformed β has 4 parameters α , γ , θ and τ . The special cases in the transformed β family involve the conditions $\alpha = 1$, $\gamma = 1$, $\tau = 1$, $\alpha = \gamma$ and $\tau = \gamma$. These are all satisfied if $\alpha = \gamma = \tau = 1$. The distribution with these values is therefore a special case of all distributions in the transformed beta family. It's pdf is

$$f(x) = \left(\frac{\Gamma(1+1)}{\Gamma(1)\Gamma(1)}\right) \frac{1\left(\frac{x}{\theta}\right)^{1\times 1}}{x\left(1+\left(\frac{x}{\theta}\right)^{1}\right)^{1+1}} = \frac{2\theta}{(\theta+x)^2}$$

It has one parameter.

2. If X follows a log-logistic distribution with $\gamma = 3$ and $\theta = 400$, what is the distribution of $\frac{1}{X}$?

The CDF of X is given by $F_X(x) = \frac{1}{1 + \left(\frac{x}{400}\right)^{-3}}$ we therefore have that the survival function of $\frac{1}{X}$ is

$$S_{\frac{1}{X}}(x) = F_X\left(\frac{1}{x}\right) = \frac{1}{1 + (400x)^3}$$

so the CDF is

$$F_{\frac{1}{X}}(x) = 1 - \frac{1}{1 + (400x)^3} = \frac{(400x)^3}{1 + (400x)^3} = \frac{1}{1 + (400x)^{-3}}$$

so $\frac{1}{X}$ has a log-logistic distribution with $\alpha = 3$ and $\theta = \frac{1}{400}$.

3. What is the limit of a generalised Pareto distribution as $\alpha \to \infty$ and $\theta \to \infty$ with $\frac{\theta}{\alpha} \to \xi$?

Solution 1:

The density function of the generalised Pareto distribution is

$$f(x) = \left(\frac{\Gamma(\alpha + \tau)}{\Gamma(\alpha)\Gamma(\tau)}\right) \frac{\left(\frac{x}{\theta}\right)^{\tau}}{x\left(1 + \frac{x}{\theta}\right)^{\alpha + \tau}}$$

If we substitute $\theta = \alpha \xi$, this becomes

$$f(x) = \left(\frac{\Gamma(\alpha + \tau)}{\Gamma(\alpha)\Gamma(\tau)}\right) \frac{1}{x} \left(\frac{\left(\frac{x}{\xi\alpha}\right)}{\left(1 + \frac{x}{\xi\alpha}\right)}\right)^{\tau} \frac{1}{\left(1 + \frac{x}{\xi\alpha}\right)^{\alpha}}$$

As $\alpha \to \infty$, we have $\frac{\Gamma(\alpha+\tau)}{\Gamma\alpha} \to \alpha^{\tau}$, and $\left(1+\frac{x}{\xi\alpha}\right)^{\alpha} \to e^{\frac{x}{\xi}}$. Substituting these into the formula gives

$$f(x) = \left(\frac{\alpha^{\tau}}{\Gamma(\tau)}\right) \frac{\left(\frac{x}{\xi\alpha}\right)^{\tau}}{x\left(1 + \frac{x}{\xi\alpha}\right)^{\tau}} e^{-\frac{x}{\xi}} = \frac{\left(\frac{x}{\xi}\right)^{\tau}}{\Gamma(\tau)x\left(1 + \frac{x}{\xi\alpha}\right)^{\tau}} e^{-\frac{x}{\xi}}$$

Finally, as $\alpha \to \infty$, we have $\left(1 + \frac{x}{\xi \alpha}\right)^{\tau} \to 1$, so in the limit

$$f(x) = \frac{\left(\frac{x}{\xi}\right)'}{\Gamma(\tau)x}e^{-\frac{x}{\xi}}$$

This distribution is a gamma distribution with $\theta = \xi$ and $\alpha = \tau$.

Solution 2:

We know that the limit of the transformed beta distribution as $\alpha \to \infty$ and $\theta \to \infty$ with $\frac{\theta}{\alpha} \to \xi$ is a transformed gamma distribution with the same γ parameter, with $\alpha = \tau$ and with $\theta = \xi$. The limit of the generalised Pareto distribution, which is the special case $\gamma = 1$ is therefore the special case of the transformed gamma distribution, which is the gamma distribution.

4. Calculate the skewness of a linear exponential distribution with pdf

$$f_X(x) = \frac{p(x)e^{r(\theta)x}}{q(\theta)}$$

We have that $\mu'_2(\theta) = \mu(\theta)^2 + \frac{\mu'(\theta)}{r'(\theta)}$. To calculate the raw third moment, we note that if we differentiate

$$q(\theta)\mu'_2(\theta) = \int_a^b x^2 p(x) e^{r(\theta)x} dx$$

with respect to θ , we get

$$q'(\theta)\mu_2'(\theta) + q(\theta)\frac{d\mu_2'(\theta)}{d\theta} = r'(\theta)\int_a^b x^3 p(x)e^{r(\theta)x}dx = r'(\theta)q(\theta)\mu_3'(\theta)$$

Substituting in our expression for $\mu_2'(\theta)$, we get that

$$\frac{d\mu_2'(\theta)}{d\theta} = 2\mu'(\theta)\mu(\theta) + \frac{\mu''(\theta)}{r'(\theta)} - \frac{\mu'(\theta)r''(\theta)}{r'(\theta)^2}$$

Now we have that $\mu_3(\theta) = \mu'_3(\theta) - 3\mu(\theta)\mu'_2(\theta) + 2\mu(\theta)^3$. Substituting in gives

$$\mu_3(\theta) = \frac{q'(\theta)\mu_2'(\theta)}{r'(\theta)q(\theta)} + \left(\frac{2\mu'(\theta)\mu(\theta)}{r'(\theta)} + \frac{\mu''(\theta)}{r'(\theta)^2} - \frac{\mu'(\theta)r''(\theta)}{r'(\theta)^3}\right) - 3\mu(\theta)\mu_2'(\theta) + 2\mu(\theta)^3$$

Recalling that $\mu(\theta) = \frac{q'(\theta)}{r'(\theta)q(\theta)}$, we get

$$\mu_{3}(\theta) = 3\mu(\theta)\mu_{2}'(\theta) - 2\mu(\theta)^{3} + \frac{\mu''(\theta)}{r'(\theta)^{2}} - \frac{\mu'(\theta)r''(\theta)}{r'(\theta)^{3}} - 3\mu(\theta)\mu_{2}'(\theta) + 2\mu(\theta)^{3}$$
$$= \frac{\mu''(\theta)}{r'(\theta)^{2}} - \frac{\mu'(\theta)r''(\theta)}{r'(\theta)^{3}}$$

The skewness is $\frac{\mu_3(\theta)}{\mu_2(\theta)^{\frac{3}{2}}}$ which when we substitute the above expression becomes:

$$\frac{\frac{\mu^{\prime\prime}(\theta)}{r^{\prime}(\theta)^{2}} - \frac{\mu^{\prime}(\theta)r^{\prime\prime}(\theta)}{r^{\prime}(\theta)^{3}}}{\left(\frac{\mu^{\prime}(\theta)}{r^{\prime}(\theta)}\right)^{\frac{3}{2}}} = \frac{\mu^{\prime\prime}(\theta)}{\mu^{\prime}(\theta)^{\frac{3}{2}}\sqrt{r^{\prime}(\theta)}} - \frac{r^{\prime\prime}(\theta)}{\sqrt{\mu^{\prime}(\theta)}r^{\prime}(\theta)^{\frac{3}{2}}} = \sqrt{\frac{q(\theta)}{q^{\prime}(\theta)}} \left(\frac{\mu^{\prime\prime}(\theta)}{\mu^{\prime}(\theta)} - \frac{r^{\prime\prime}(\theta)}{r^{\prime}(\theta)}\right)$$

Standard Questions

5. What is the limiting distribution of an inverse transformed gamma distribution as $\alpha \to \infty$, $\tau \to 0$ and $\theta \to 0$, with $\frac{\sqrt{\theta^{\tau}}}{\tau} \to \sigma$ and $\frac{\theta^{\tau}\alpha - 1}{\tau} \to \mu$?

Recall that an inverse transformed gamma with parameters α , τ and θ is the inverse of a transformed gamma distribution with parameters α , τ and $\frac{1}{\theta}$. Therefore, as $\alpha \to \infty$, $\tau \to 0$ and $\theta \to 0$, with $\frac{\sqrt{\theta\tau}}{\tau} \to \sigma$ and $\frac{\theta^{\tau}\alpha-1}{\tau} \to \mu$, the limiting distribution is the inverse of the limiting distribution of a transformed gamma. That is, a log-normal distribution with parameters μ and σ . The inverse of this is a log-normal distribution with parameters $-\mu$ and σ .

6. An insurance company is modelling claim size by a distribution from a linear exponential family with one parameter θ , with density function

$$f_X(x) = \frac{p(x)e^{r(\theta)x}}{q(\theta)}$$

on its support, $[0,\infty)$. The company wants the mean of the distribution to be θ , and the variance to be $\frac{\theta^2}{3}$ for all values of θ . What is the pdf of the distribution? [Hint: p(x) will be a quadratic function of x. Try evaluating the integral for $p(x) = x^2$, p(x) = x and p(x) = 1 to find the correct function for p(x).] We know that the mean of a distribution in the linear exponential family is $\frac{q'(\theta)}{r'(\theta)q(\theta)}$, and the variance is $\frac{\mu'(\theta)}{r'(\theta)}$. Since we want $\mu(\theta) = \theta$, and the variance to equal $\frac{\theta^2}{3}$, we get $\frac{1}{r'(\theta)} = \frac{\theta^2}{3}$, we need $r'(\theta) = \frac{3}{\theta^2}$, and integrating, we get $r(\theta) = C - \frac{3}{\theta}$. The equation for the mean then gives $\frac{q'(\theta)}{q(\theta)} = r'(\theta)\theta = \frac{3}{\theta}$. Integrating this gives $\log(q(\theta)) = K + 3\log(\theta)$, or $q(\theta) = C_2\theta^3$.

Finally, for this to be a distribution, we need $\int_0^\infty p(x)e^{r(\theta)x}dx = q(\theta)$. Multiplying be a constant if necessary, we can ensure that $C_2 = 1$, so $\int_0^\infty p(x)e^{(C-\frac{3}{\theta})x}dx = \theta^3$. For $p = x^2$, this integral is $\int_0^\infty x^2e^{(C-\frac{3}{\theta})x}dx = \frac{1}{2}\left(\frac{\theta}{3-C\theta}\right)^3$. For the integral to converge, we must have $C\theta < 3$ for all values of θ in the interval $[0,\infty)$, which means that $C \leq 0$. We see that C = 0 gives a solution with $p(x) = 54x^2$. The distribution is therefore

$$f(x) = \frac{54x^2 e^{-3\frac{x}{\theta}}}{\theta^3}$$