ACSC/STAT 3703, Actuarial Models I (Further Probability with Applications to Actuarial Science)
Winter 2015
Toby Kenney
Homework Sheet 4
Model Solutions

Basic Questions

1. Let X follow a negative binomial distribution with $r=4$ and $\beta=1.2$. What is the probability that $X=8$?
$P(X=8)=\binom{11}{8}\left(\frac{1}{2.2}\right)^{8}\left(\frac{1.2}{2.2}\right)^{4}=.0266156303$
2. The number of claims on each insurance policy over a given time period is observed as follows:

Number of claims	Number of policies
0	736
1	382
2	74
3	7
4	2
5 or more	0

Which distribution(s) from the ($a, b, 0$)-class and ($a, b, 1$)-class appear most appropriate for modelling this data?
We compute the ratio $\frac{k p_{k}}{p_{k-1}}$:

k	$\frac{k p_{k}}{p_{k-1}}$
1	0.5190217391
2	0.3874345549
3	0.2837837837
4	1.1428571428

Here we see that these ratios are decreasing, which means that the negative binomial is not appropriate, and instead, either a Poisson or a binomial should be used.
3. X follows an extended modified negative binomial distribution with $r=$ -0.8 and $\beta=2$, and $p_{0}=0.4$. What is $P(X=7)$?
This is an $(a, b, 1)$-distribution with $a=\frac{2}{1+2}$ and $b=-(1+0.8) \frac{2}{1+2}$. We also know that $p_{1}^{T}=\frac{-0.8 \times 2}{(1+2)^{1-0.8}-(1+2)}=0.912060776$. For the zeromodified distribution, we therefore get $p_{1}^{M}=0.6 \times 0.912060776=.5472364656$. We then use the recurrence relation

$$
\begin{aligned}
p_{2} & =\left(\frac{2}{3}-\frac{1.8}{3}\right) p_{1}=0.0364824310 \\
p_{3} & =\left(\frac{2}{3}-\frac{3.6}{9}\right) p_{2}=0.0097286482 \\
p_{4} & =\left(\frac{2}{3}-\frac{3.6}{12}\right) p_{3}=0.0035671710 \\
p_{5} & =\left(\frac{2}{3}-\frac{3.6}{15}\right) p_{4}=0.0015219929 \\
p_{6} & =\left(\frac{2}{3}-\frac{3.6}{18}\right) p_{5}=0.0007102633 \\
p_{7} & =\left(\frac{2}{3}-\frac{3.6}{21}\right) p_{6}=0.0003517494
\end{aligned}
$$

4. Let X follow a compound Poisson-Negative binomial distribution with parameters $\lambda=3.3, r=4.8$ and $\beta=2.3$. Calculate the conditional probability that $X=7$ given that $X \leqslant 10$.
We can calculate this using the recursive formula

$$
g_{k}=\frac{1}{1-a f_{0}} \sum_{i=1}^{k}\left(a+\frac{b i}{k}\right) f_{j} g_{k-j}
$$

We know that $f_{k}=\binom{k+3.8}{k} 0.3030303^{k} 0.69696969^{4.8}$, so we obtain the following values:

k	f_{k}
0	0.176777383
1	.2571307388
2	.2259633760
3	.1552071673
4	.0917133261
5	.0489137739
6	.0242098476
7	.0113188897
8	.0050592006
9	.0021803962
10	.0009118020
11	.0003717539

For the Poisson distribution, we have $a=0$ and $b=\lambda$, so using the recurrence, if we set $g_{0}=1$, we get

$$
g_{k}=\sum_{i=1}^{k}\left(\frac{3.3 i}{k}\right) f_{i} g_{k-i}
$$

k	g_{k}
0	1
1	0.8485314380
2	1.1056819413
3	1.2467404102
4	1.3053235122
5	1.3000408476
6	1.2447087146
7	1.1529437003
8	1.0380119
9	0.9116626
10	0.7833687
11	0.6601146

The total $g_{0}+\ldots+g_{10}=11.15365$, so the conditional probability that $X=7$ given that $X \leqslant 10$ is $\frac{1.1529437003}{11.15365}=0.1033692$.
5. Let X follow a mixed negative binomial distribution with $\beta=1.5$ and r following a gamma distribution with $\alpha=2$ and $\theta=4$. What is the probability that $X=2$?
For a fixed value of r, the probability that $X=2$ is given by

$$
P(X=2)=\frac{r(r+1)}{2} 0.4^{2} 0.6^{r}=0.08 r(r+1) e^{\log (0.6) r}
$$

The overall probability is given as the expected value of this over the distribution of r. That is

$$
P(X=2)=\frac{0.08 \int_{0}^{\infty} r(r+1) e^{(\log (0.6)-0.25) r} d r}{4^{2} \Gamma(2)}
$$

Let $\phi=\frac{1}{0.25-\log (0.6)}=1.31436162$. We now have
$P(X=2)=\frac{0.08 \int_{0}^{\infty}\left(r^{2}+r\right) e^{-\frac{r}{\phi}} d r}{16}=0.005\left(\phi^{3} \Gamma(3)+\phi^{2} \Gamma(2)\right)=0.03134394$

Standard Questions

6. An insurance company estimates that the number of claims made by an individual in a year follows a Poisson distribution with parameter λ, where λ varies between individuals, following a gamma distribution with $\alpha=3$ and $\theta=0.05$.
(a) What is the probability that a randomly chosen individual makes 3 claims in a given year?
The gamma mixture of Poisson random variables follows a negative binomial distribution with $r=\alpha=3$ and $\beta=\theta=0.05$. The probability that this is 3 is $\frac{3 \times 4 \times 5}{6}\left(\frac{0.05}{1.05}\right)^{3}\left(\frac{1}{1.05}\right)^{3}=0.000932769$.
(b) If an individual has made 3 claims in a given year, what is the probability that that individual makes 3 claims in the next year?

If an individual has a given value of λ, the probability that they make 3 claims in a year for two consecutive years is $\left(e^{-\lambda} \frac{\lambda^{3}}{6}\right)^{2}$. The probability of this for a randomly chosen individual is the expected value of this probability over the distribution of λ. That is

$$
P=\int_{0}^{\infty}\left(e^{-\lambda} \frac{\lambda^{3}}{6}\right)^{2} \frac{\lambda^{2}}{0.05^{3}} e^{-\frac{\lambda}{0.05}} d \lambda=\int_{0}^{\infty} \frac{\lambda^{8}}{36 \times 0.05^{3}} e^{-22 \lambda} d \lambda
$$

We have that

$$
\int_{0}^{\infty} \lambda^{8} e^{-22 \lambda} d \lambda=\frac{\Gamma(9)}{22^{9}}
$$

so we get $P=\frac{\Gamma(9)}{22^{9} \times 0.05^{6} \times 36}=0.000007422$. The probability that an individual who made 3 claims last year makes 3 claims again this year is $\frac{0.000007422}{0.000932769}=0.007956954$.
7. An insurance company models the number of claims X on a given policy using a distribution from the ($a, b, 1$)-class. The company wants its distribution to match the observed mean $\mathbb{E}(X)=0.475$ and probability of zero $P(X=0)=0.738$, and also wants $P(X>3)=0.01$. From this, they calculate $P(X=1)=0.1120652294$. Under this model, what is the probability that an individual makes 4 claims in a year? [Hint: for a general member of the $(a, b, 1)-$ class, we have $\mathbb{E}(X)=\frac{p_{1}+(a+b)\left(1-p_{0}\right)}{1-a}$ and $\left.p_{1}^{T}=\frac{a+b}{(1-a)^{-1-\frac{b}{a}}-1}.\right]$
The mean of a distribution from the $(a, b, 1)$-class is given by $\frac{p_{1}+(a+b)\left(1-p_{0}\right)}{1-a}$, so we have $\frac{p_{1}+(a+b)\left(1-p_{0}\right)}{1-a}=0.475$. Substituting $p_{0}=0.738$ and $p_{1}=0.112$ gives us $0.112+0.262(a+b)=0.475-0.475 a$. We are also given $p_{2}+p_{3}=$ $0.99-0.738-0.112=0.140$, so we have $0.112\left(\left(a+\frac{b}{2}\right)+\left(a+\frac{b}{2}\right)\left(a+\frac{b}{3}\right)\right)=$ 0.140. We solve these equations

$$
\begin{aligned}
(2 a+b)(3+3 a+b) & =7.5 \\
0.737 a+0.262 b & =0.363
\end{aligned}
$$

From this, we deduce:

$$
\begin{aligned}
b & =1.3855-2.8130 a \\
(1.3855-0.8130 a)(4.3855+0.1870 a) & =-7.5 \\
0.1520 a^{2}+3.3062 a-6.0761 & =-7.5
\end{aligned}
$$

$a=-0.440$ or $a=-21.31$. $a=-0.440$ gives $b=2.62$ and so $p_{1}=$ $\frac{2.62-0.440}{(1.440)^{\frac{2.62}{0.44}-1}-1}=0.112$ as required. $a=-21.31$ gives $b=61.3165$, and $p_{1}=\frac{61.3165-21.31}{(22.31)^{\frac{61.3165}{21.31}-1}-1}=0.0309$, so the first solution is the one required.
That is $a=-0.440, b=2.62$. [This is not actually a valid distribution. The closest valid distribution is $b=6 a=2.64$, which is a binomial distribution with $n=5$ and $p=\frac{0.44}{1-0.44}=.7857$.]
8. An insurance company insures 200 houses. The number of claims resulting from these policies follows a compound Poisson-Binomial distribution with $\lambda=12, n=8$ and $p=0.001$. The company's risk management division wants to ensure that the probability of receiving 2 or more claims should be at most 0.001. How many houses can the company insure while satisfying this condition?
(i) 52
(ii) 88
(iii) 147
(iv) 260

If the number of houses insured increases, the parameter λ will increase proportionally. The pgf of a Poisson is $e^{\lambda(z-1)}$, and for a binomial, it is $(1-p+p z)^{n}$. The pgf of the compound distribution is therefore $P(z)=e^{\lambda\left((1-p+p z)^{n}-1\right)}=e^{\lambda\left((0.999+0.001 z)^{8}-1\right)}$. The derivatives of this are $P^{\prime}(z)=0.008 \lambda(0.999+0.001 z)^{7} e^{\lambda\left((0.999+0.001 z)^{8}-1\right)}$ Evaluating
 $p_{1}=P^{\prime}(0)=0.008 \lambda(0.999)^{7} e^{\lambda\left(0.999^{8}-1\right)}=0.007944168 \lambda e^{-0.007972056 \lambda}$. We want to choose λ so that the sum of these is 0.999 . That is, we want $(1+0.007944168 \lambda) e^{-0.007972056 \lambda}=0.999$.

Evaluating this for the values of λ resulting from the options given, we get
(i) $(1+0.007944168 \times 3.12) e^{-0.007972056 \times 3.12}=0.99961088$
(ii) $(1+0.007944168 \times 5.28) e^{-0.007972056 \times 5.28}=0.998997405$
(iii) $(1+0.007944168 \times 8.82) e^{-0.007972056 \times 8.82}=0.99741161$
(iv) $(1+0.007944168 \times 15.6) e^{-0.007972056 \times 15.6}=0.992494833$

So (ii) is the correct answer: they can insure up to 88 houses.
[We can find an approximate answer by the Taylor approximation $e^{0.007972056 \lambda} \approx$ $1+0.007972056 \lambda+0.000031777 \lambda^{2}$, which gives the equation $1+0.007944168 \lambda=$ $0.999\left(1+0.007972056 \lambda+0.000031777 \lambda^{2}\right)$, or $0.001=(0.007964084-$ $0.007944168) \lambda+0.000031745 \lambda^{2}$, so $\lambda=5.307649251$. This means the company can insure $\frac{5.307649251}{12} \times 200=88$ houses.]

Bonus Question

9. Using the general recursion formula, show that the expected value of a distribution from the $(a, b, 0)$-class is given by $\frac{a+b}{1-a}$.

We have $p_{k}=\left(a+\frac{b}{k}\right) p_{k-1}$. We therefore have $k p_{k}=a k p_{k-1}+b p_{k-1}$, so
$\mathbb{E}(X)=\sum_{k=1}^{\infty} k p_{k}=\sum_{k=1}^{\infty} a k p_{k-1}+\sum_{k=0}^{\infty} b p_{k}=a \sum_{l=0}^{\infty} l p_{l}+a \sum_{l=0}^{\infty} p_{l}+b \sum_{k=0}^{\infty} p_{k}=a+b+a \mathbb{E}(X)$
We solve this to get

$$
\mathbb{E}(X)=\frac{a+b}{1-a}
$$

[For the $(a, b, 1)$-class,
$\mathbb{E}(X)=p_{1}+\sum_{k=2}^{\infty} k p_{k}=p_{1}+\sum_{k=2}^{\infty} a k p_{k-1}+\sum_{k=1}^{\infty} b p_{k}=p_{1}+a \sum_{l=1}^{\infty} l p_{l}+a \sum_{l=1}^{\infty} p_{l}+b \sum_{k=1}^{\infty} p_{k}=p_{1}+(a+b)\left(1-p_{0}\right)+a \mathbb{E}($
We therefore get $\mathbb{E}(X)=\frac{p_{1}+(a+b)\left(1-p_{0}\right)}{1-a}$.]

