ACSC/STAT 3703, Actuarial Models I (Further

 Probability with Applications to Actuarial Science)Winter 2015
Toby Kenney
Homework Sheet 5
Model Solutions

Basic Questions

1. An insurance company has an insurance policy where the loss amount follows a gamma distribution with $\alpha=2$ and $\theta=1000$. Calculate the expected payment per claim if the company introduces a deductible of d.
If the company introduces a deductible of d, the expected payment per loss is given by

$$
\frac{\int_{d}^{\infty}(x-d) x e^{-\frac{x}{1000}} d x}{1000^{2}}=\frac{\int_{d}^{\infty} x^{2} e^{-\frac{x}{1000}} d x-d \int_{d}^{\infty} x e^{-\frac{x}{1000}}}{1000^{2}} d x
$$

We integrate by parts
$\int_{d}^{\infty} x^{2} e^{-\frac{x}{1000}} d x=\left[-1000 x^{2} e^{-\frac{x}{1000}}\right]_{d}^{\infty}+2000 \int_{d}^{\infty} x e^{-\frac{x}{1000}} d x=1000 d^{2} e^{-\frac{d}{1000}}+2000 \int_{d}^{\infty} x e^{-\frac{x}{1000}} d x$
and
$\int_{d}^{\infty} x e^{-\frac{x}{1000}} d x=\left[-1000 x e^{-\frac{x}{1000}}\right]_{d}^{\infty}+1000 \int_{d}^{\infty} e^{-\frac{x}{1000}} d x=1000 d e^{-\frac{d}{1000}}+1000^{2} e^{-\frac{d}{1000}}$
We therefore have that the expected payment per loss is

$$
\begin{aligned}
& \frac{1000 d^{2} e^{-\frac{d}{1000}}+(2000-d)\left(1000 d e^{-\frac{d}{1000}}+1000^{2} e^{-\frac{d}{1000}}\right)}{1000^{2}}= \\
& \frac{\left(d^{2}+(2000-d)(d+1000)\right) e^{-\frac{d}{1000}}}{1000}=(d+2000) e^{-\frac{d}{1000}}
\end{aligned}
$$

The probability that a loss results in a claim is
$\frac{\int_{d}^{\infty} x e^{-\frac{x}{1000}} d x}{1000^{2}}=\frac{\left[-1000 x e^{-\frac{x}{1000}}\right]_{d}^{\infty}+1000 \int_{d}^{\infty} e^{-\frac{x}{1000}} d x}{1000^{2}}=\frac{(d+1000) e^{-\frac{d}{1000}}}{1000}$
The expected payment per claim is therefore given by

$$
\frac{(d+2000) e^{-\frac{d}{1000}}}{\left(\frac{(d+1000) e^{-\frac{d}{1000}}}{1000}\right)}=1000\left(\frac{d+2000}{d+1000}\right)
$$

2. The severity of a loss on a car insurance policy follows a Pareto distribution with $\alpha=3$ and $\theta=3000$. Calculate the loss eliminatrion ratio of a deductible of $\$ 1,000$.
The expected value of a random loss is $\frac{\theta}{\alpha-1}=1500$. The expected payment per loss with the deductible of $\$ 1,000$ is $\int_{1000}^{\infty}\left(1+\frac{x}{3000}\right)^{-3} d x$. Making the substitution, $u=1+\frac{x}{3000}$, we get that the expected payment per loss is

$$
3000 \int_{1+\frac{1000}{3000}}^{\infty} u^{-3} d u=3000\left[-\frac{1}{2 u^{2}}\right]_{\frac{4}{3}}^{\infty}=\frac{3000}{2\left(\frac{4}{3}\right)^{2}}=\frac{27000}{32}
$$

The loss elimination ratio is therefore

$$
1-\frac{27000}{32 \times 1500}=\frac{7}{16}=43.75 \%
$$

3. An insurance company has a policy where losses follow a Weibull distribution with $\tau=0.5$ and $\theta=6000$. The company's risk management division decides that the TVaR at the 95\% level, for this policy needs to be reduced to $\$ 75,000$. What policy limit should the company put on the policy to achieve this?
(i) \$84,400 (ii)\$96,300 (iii) \$122,000 (iv) \$147,000

The survival function of this Weibull distribution is

$$
S(x)=e^{-\left(\frac{x}{\theta}\right)^{\tau}}=e^{-\left(\frac{x}{6000}\right)^{0.5}}
$$

Setting this equal to 0.05 gives

$$
\begin{aligned}
e^{-\left(\frac{x}{6000}\right)^{0.5}} & =0.05 \\
\left(\frac{x}{6000}\right)^{0.5} & =\log (20) \\
x & =6000 \log (20)^{2} \\
& =53846.47
\end{aligned}
$$

The TVaR is then the conditional expected value of X given that X is above the 95 th percentile. For a policy limit of u, this is

$$
53846.47+\frac{\int_{53846.47}^{u} e^{-\left(\frac{x}{6000}\right)^{0.5}} d x}{0.05}
$$

Letting $\nu=\left(\frac{x}{6000}\right)^{0.5}$, we have $\frac{d \nu}{d x}=\frac{0.5 x^{-0.5}}{6000^{0.5}}=\frac{\nu^{-1}}{12000}$. We therefore have that the TVaR is

$$
\begin{aligned}
& 53846.47+20 \int_{\log (20)}^{\left(\frac{u}{6000}\right)^{0.5}} 12000 \nu e^{-\nu} d \nu \\
= & 53846.47+240000\left[-\nu e^{-\nu}\right]_{\log (20)}^{\sqrt{\frac{u}{600}}}+240000 \int_{\log (20)}^{\sqrt{\frac{u}{6000}}} e^{-\nu} d \nu \\
= & 53846.47+240000\left[-\nu e^{-\nu}\right]_{\log (20)}^{\sqrt{\frac{u}{600}}}+240000\left[-e^{-\nu}\right]_{\log (20)}^{\sqrt{\frac{u}{6000}}} \\
= & 53846.47+12000(\log (20)+1)-240000 \sqrt{\frac{u}{6000}} e^{-\sqrt{\frac{u}{6000}}}-240000 e^{-\sqrt{\frac{u}{6000}}}
\end{aligned}
$$

Setting this equal to $\$ 75,000$ gives

$$
\begin{aligned}
53846.47+12000(\log (20)+1)-240000 \sqrt{\frac{u}{6000}} e^{-\sqrt{\frac{u}{6000}}}-240000 e^{-\sqrt{\frac{u}{6000}}}=75000 \\
-240000 e^{-\sqrt{\frac{u}{6000}}}\left(1+\sqrt{\frac{u}{6000}}\right)=26795.26 \\
e^{-\sqrt{\frac{u}{6000}}}\left(1+\sqrt{\frac{u}{6000}}\right)=\frac{26795.26}{240000}=0.11165
\end{aligned}
$$

The options given lead to the following TVaR:

u	$e^{-\sqrt{\frac{u}{6000}}}\left(1+\sqrt{\frac{u}{6000}}\right)$
(i) 84,400	0.11166
(ii) 96,300	0.09112
(iii) 122,000	0.06064
(iv) 147,000	0.04216

So (i) $\$ 84,400$ is the appropriate policy limit.

Standard Questions

4. For a certain insurance policy, losses follow a gamma distribution with $\alpha=7$ and $\theta=3,000$. The deductible is set to achieve a loss elimination ratio of 20%.
(a) Calculate the deductible
(i) 1500
(ii) 2700
(iii) 3300
(iv) 4200

The expected loss is $7 \times 3000=21000$. With the deductible d, the expected payment per loss is

$$
\frac{\int_{d}^{\infty}(x-d) x^{6} e^{-\frac{x}{3000}} d x}{3000^{7} \Gamma(7)}
$$

Making the substitution $y=\frac{x}{3000}$, this expected payment per loss is

$$
\frac{\int_{\frac{d}{3000}}^{\infty}(3000 y-d) y^{6} e^{-y} d y}{\Gamma(7)}
$$

We need to evaluate this integral. Integrating by parts, we get

$$
\int_{a}^{\infty} y^{n} e^{-y} d y=\left[-y^{n} e^{-y}\right]_{a}^{\infty}+n \int_{a}^{\infty} y^{n-1} e^{-y} d y=a^{n} e^{-a}+n \int_{a}^{\infty} y^{n-1} e^{-y} d y
$$

So the expected payment per loss is

$$
\left(\frac{3000 a^{7}}{6!}+(21000-d)\left(\frac{a^{6}}{6!}+\frac{a^{5}}{5!}+\frac{a^{4}}{4!}+\frac{a^{3}}{3!}+\frac{a^{2}}{2!}+a+1\right)\right) e^{-a}
$$

where $a=\frac{d}{3000}$.

$$
\begin{aligned}
3000\left(\frac{a^{7}}{6!}+(7-a)\left(\frac{a^{6}}{6!}+\frac{a^{5}}{5!}+\frac{a^{4}}{4!}+\frac{a^{3}}{3!}+\frac{a^{2}}{2!}+a+1\right)\right) e^{-a}=16800 \\
\left(\frac{a^{6}}{6!}+\frac{2 a^{5}}{5!}+\frac{3 a^{4}}{4!}+\frac{4 a^{3}}{3!}+\frac{5 a^{2}}{2!}+6 a+7\right) e^{-a}=\frac{16800}{3000}=5.6
\end{aligned}
$$

We substitute the options to get:

	d
$\left(\frac{a^{6}}{6!}+\frac{2 a^{5}}{5!}+\frac{3 a^{4}}{4!}+\frac{4 a^{3}}{3!}+\frac{5 a^{2}}{2!}+6 a+7\right) e^{-a}$	
(i) 1500	6.50
(ii) 2700	6.10
(iii) 3300	5.90
(iv) 4200	5.60

So the deductible should be $\$ 4,200$.
(b) Two years later, there has been uniform inflation of 10%, and the company is considering changing the deductible. What is the new loss elimination for the current deductible after this 10% inflation?
After 10% inflation, the loss distribution is a gamma distribution with $\alpha=$ 7 and $\theta=3300$. The expected loss is therefore 23100, and the expected loss with the deductible is $3300\left(\frac{a^{6}}{6!}+\frac{2 a^{5}}{5!}+\frac{3 a^{4}}{4!}+\frac{4 a^{3}}{3!}+\frac{5 a^{2}}{2!}+6 a+7\right) e^{-a}$, where $a=\frac{d}{3300}=1.272727$. This gives $3300\left(\frac{a^{6}}{6!}+\frac{2 a^{5}}{5!}+\frac{3 a^{4}}{4!}+\frac{4 a^{3}}{3!}+\frac{5 a^{2}}{2!}+6 a+7\right) e^{-a}=$ 18900.21 and the loss elimination ratio is $1-\frac{18900.21}{23100}=18.18 \%$.
5. For a certain insurance policy, losses follow an inverse exponential distribution with $\theta=\frac{1}{2000}$. There is currently a deductible of \$1000, a policy limit of $\$ 500,000$, and coinsurance where the insurance pays 80% of the loss above $\$ 1000$ and below $\$ 500,000$ (so the maximum total payment is \$399,200).
(a) Calculate the expected payment per loss. [You may use the approximation $e^{-y} \approx 1-y$ for small values of y.]
The survival function of the inverse exponential is $S(x)=1-e^{-\frac{1}{2000 x}}$ so the expected payment per loss is

$$
\int_{1000}^{500000} 0.8\left(1-e^{-\frac{1}{2000 x}}\right) d x=399,200-0.8 \int_{1000}^{500000} e^{-\frac{1}{2000 x}} d x
$$

We make the substitution $y=\frac{1}{2000 x}$ to get

$$
\begin{aligned}
\int_{1000}^{500000} e^{-\frac{1}{2000 x}} d x & =\frac{1}{2000} \int_{10^{-9}}^{5 \times 10^{-7}} y^{-2} e^{-y} d y \approx \frac{1}{2000} \int_{10^{-9}}^{5 \times 10^{-7}} y^{-2}-y^{-1} d y=\frac{1}{2000}\left[\log (y)-\frac{1}{y}\right]_{10^{-9}}^{5 \times 10^{-7}} \\
& =500000-1000+\frac{\log \left(5 \times 10^{-7}\right)-\log \left(10^{-9}\right)}{2000}=499000-\frac{\log (500)}{2000}
\end{aligned}
$$

so the expected payment per loss is

$$
399200-399200+\frac{\log (500)}{2000}=\$ 0.003107304
$$

(b) The insurance company determines that the following actions will all attract more customers:
(i) removing the deductible.
(ii) increasing the proportion payed by the insurance to 85%
(iii) increasing the policy limit to $\$ 1,000,000$.

Which results in the smallest increase to the expected payment per loss?
Under (i), the new expected payment per loss is

$$
400000-\frac{0.8}{2000} \int_{10^{-9}}^{\infty} y^{-2} e^{-y} d y
$$

Using the Taylor expansion, we get

$$
\int_{10^{-9}}^{\infty} y^{-2} e^{-y} d y=\int_{10^{-9}}^{\infty} y^{-2}-y^{-1}+\frac{1}{2}-\frac{y}{6}+\frac{y^{2}}{24}-\cdots d y
$$

We can divide this integral into 2 parts, from 10^{-9} to A and from A to ∞. The first part can be calculated using the Taylor expansion, while the
second part we can approximate by $A^{-2} e^{-A}$. The expected payment then becomes

$$
\frac{0.8}{2000}\left(\log \left(\frac{A}{10^{-9}}\right)-\frac{A}{2}+\frac{A^{2}}{12}-\frac{A^{3}}{72}+\frac{A^{4}}{480}-\cdots-A^{-2} e^{-A}\right)=\$ 0.00881
$$

Under (ii), the expected payment per loss is multiplied by $\frac{0.85}{0.8}$, so it becomes $\$ 0.003301511$.
Under (iii), the expected payment per loss becomes

$$
799600-\frac{0.8}{2000} \int_{5 \times 10^{-10}}^{5 \times 10^{-7}} y^{-2} e^{-y} d y=\frac{\log (1000)}{2000}=\$ 0.003453878
$$

Therefore option (ii) is the least expensive.
6. A certain insurance policy has losses following a Burr distribution with $\gamma=0.6, \alpha=2$ and $\theta=4000$. There is a deductible of \$2,000, and the number of claims under the policy follows a negative binomial distribution with $r=8$ and $\beta=1.3$. What would the distribution of the number of claims be if the company reduces the deductible to $\$ 1,000$?

With the deductible at $\$ 2,000$, the probability that a loss results in a claim is

$$
\frac{1}{\left(1+\left(\frac{x}{\theta}\right)^{\gamma}\right)^{\alpha}}=\frac{1}{\left(1+\left(\frac{2000}{4000}\right)^{0.6}\right)^{2}}=0.363004974
$$

With the deductible at $\$ 1,000$, the probability that a loss results in a claim is

$$
\frac{1}{\left(1+\left(\frac{1000}{4000}\right)^{0.6}\right)^{2}}=0.485433327
$$

Therefore, the probability that a loss which exceeds $\$ 1,000$ also exceeds $\$ 2,000$ is $\frac{0.363004974}{0.485433327}=0.74779574$. The new claims distribution should have the property that when compounded with a Bernoulli distribution with probability 0.74779574 , the result is a negative binomial distribution with $r=8$ and $\beta=1.3$. That is, its probability generating function must satisfy $P(0.25220426+0.74779574 z)=(1-1.3(z-1))^{-8}$. If we substitute $u=0.25220426+0.74779574 z$, we get $z=\frac{u-0.25220426}{0.74779574}$, so we have
$P(u)=\left(1-1.3\left(\frac{u-0.25220426}{0.74779574}-1\right)\right)^{-8}=(1-1.738442639(u-1))^{-8}$
So the new distribution is a negative binomial distribution with $r=8$ and $\beta=1.738442639$.

