ACSC/STAT 3720, Life Contingencies I
 WINTER 2015
 Toby Kenney
 Formula Sheet

Notation

For any age, the notation $[x]+s$ indicates current age $x+s$, and select at age x.

- ${ }_{t} p_{x}$ probability that a life aged x survives for t years.
- ${ }_{t} q_{x}$ probability that a life aged x dies within t years.
- $\left.{ }_{u}\right|_{t} q_{x}$ probability that a life aged x survives u years, then dies within the following t years.
- $\stackrel{\circ}{e}_{x}$ expected future lifetime for a life aged x.
- e_{x} curtate expected future lifetime for a life aged x.
- $\stackrel{\circ}{x}_{x: \bar{t} \mid}$ expected future lifetime for a life aged x with upper bound of t.
- i Effective annual interest rate
- v Annual discount factor $(1+i)^{-1}$
- δ Force of interest $\log (1+i)$
- $i^{(p)}$ Nominal interest rate compounded p times per year
- d Annual discount rate $1-v$
- $d^{(m)}$ Nominal discount rate compounded m times per year $m\left(1-v^{\frac{1}{m}}\right)$
- \bar{A}_{x} Expected present value of $\$ 1$ when a life of present age x dies
- A_{x} Expected present value of $\$ 1$ at the end of the year in which a life of present age x dies
- $A_{x}^{(m)}$ Expected present value of $\$ 1$ at the end of the period $\frac{1}{m}$ th of a year in which a life of present age x dies
- ${ }^{2} A_{x}$ Like A_{x}, but evaluated at twice the actual force of interest, or effective interest rate $(1+i)^{2}-1$.
- $A_{x: \bar{t} \mid}$ Expected present value of $\$ 1$ at the end of the year in which a life of present age x dies, or after t years, whichever comes sooner.
- $A_{x: \bar{t} \mid}^{1}$ Expected present value of $\$ 1$ at the end of the year in which a life of present age x dies provided this happens within t years.
- $u \mid A_{x}$ Expected present value of $\$ 1$ at the end of the year in which a life of present age x dies provided this happens after at least u years.
- \ddot{a}_{x} EPV of an annual annuity due with $\$ 1$ payments lasting until a life aged x dies. (First payment now)
- a_{x} EPV of an immediate annual annuity with $\$ 1$ payments lasting until a life aged x dies. (First payment in 1 year's time).
- $\ddot{a}_{x: \bar{n} \mid}$ EPV of an annual annuity due with $\$ 1$ payments lasting until a life aged x dies or for a maximum of n payments if the life survives long enough. (First payment now)
- $\ddot{a}_{\bar{n} \mid}$ EPV of an annual annuity due with $\$ 1$ payments lasting for n payments. (First payment now)
- \ddot{a}_{x}^{m} EPV of an annuity due with payments $\frac{1}{m}, m$ times per year lasting until a life aged x dies. (First payment now)
- \bar{a}_{x} EPV of an annuity due with continuous payments at a rate of $\$ 1$ per year lasting until a life aged x dies.

Formulae

Relations between probabilities

$$
\begin{aligned}
{ }_{t} p_{x}+{ }_{t} q_{x} & =1 \\
\left.{ }_{u}\right|_{t} q_{x} & ={ }_{u} p_{x}-{ }_{u+t} p_{x} \\
{ }_{u+t} p_{x} & ={ }_{u} p_{x t} p_{x+u} \\
\mu_{x} & =-\frac{1}{{ }_{x} p_{0}} \frac{d}{d x}\left({ }_{x} p_{0}\right) \\
f_{x}(t) & ={ }_{t} p_{x} \mu_{x+t} \\
{ }_{t} q_{x} & =\int_{0}^{t}{ }_{s} p_{x} \mu_{x+s} d s
\end{aligned}
$$

Annuity-Certain

$$
\begin{aligned}
& a_{\bar{n} \mid i}=\frac{1-(1+i)^{-n}}{i} \\
& \ddot{a}_{\bar{n} \mid i}=\frac{1-(1+i)^{-n}}{d} \\
& s_{\bar{n} \mid i}=\frac{(1+i)^{n}-1}{i}
\end{aligned}
$$

Formulae for Present Value of a Whole-Life Annuity-due

$$
\begin{aligned}
& \ddot{a}_{x}=\frac{1-A_{x}}{d} \\
& \ddot{a}_{x}=\sum_{k=0}^{\infty} v^{k}{ }_{k} p_{x} \\
& \ddot{a}_{x}=\sum_{k=0}^{\infty} \ddot{a}_{\overline{k+1} \mid} \mid q_{x}
\end{aligned}
$$

Formulae for Present Value of a Whole-Life Continuous Annuity

$$
\begin{aligned}
& \bar{a}_{x}=\frac{1-\bar{A}_{x}}{\delta} \\
& \bar{a}_{x}=\int_{t=0}^{\infty} e^{-\delta t}{ }_{t} p_{x} \\
& \bar{a}_{x}=\int_{t=0}^{\infty} \bar{a}_{\bar{t} \mid k} \mid q_{x}
\end{aligned}
$$

Relations between Values of Insurance and Annuities

$$
\begin{aligned}
& \bar{A}_{x: \bar{n} \mid}=A_{x}+{ }_{n} p_{x}(1+i)^{-n}\left(1-A_{x+n}\right) \\
& \bar{A}_{x: \bar{n} \mid}^{1}=A_{x}-{ }_{n} p_{x}(1+i)^{-n} A_{x+n}=\bar{A}_{x: \bar{n} \mid}-{ }_{n} p_{x}(1+i)^{-n} \\
& \bar{a}_{x: \bar{n} \mid}=\bar{a}_{x}-{ }_{n} p_{x}(1+i)^{-n} \bar{a}_{x+n}
\end{aligned}
$$

Policy Values

$$
\begin{aligned}
{ }_{t} V & =\left(p_{x+t t+1} V+q_{x+t} S\right)(1+i)^{-1}-P \\
\frac{d}{d t}{ }_{t} V & =\delta_{t}{ }_{t} V+P_{t}-\left(S_{t}-{ }_{t} V\right) \mu_{x+t}
\end{aligned}
$$

where P is the premium payable at time t and S is the death benefit.

Approximations

Uniform Distribution of Deaths (UDD)
Continous case:

$$
\bar{A}_{x}=\frac{i}{\delta} A_{x}
$$

Discrete case:

$$
A_{x}^{m}=\frac{i}{i^{m}} A_{x}
$$

Woolhouse's formula
Continuous case:

$$
\bar{a}_{x}=\ddot{a}_{x}-\frac{1}{2}+\frac{1}{12}\left(\delta+\mu_{x}\right)
$$

Discrete case:

$$
\ddot{a}_{x}^{(m)}=\ddot{a}_{x}-\frac{m-1}{2 m}-\frac{m^{2}-1}{12 m^{2}}\left(\delta+\mu_{x}\right)
$$

We often use the approximation $\mu_{x}=\frac{1}{2}\left(q_{x-1}+q_{x}\right)$.

